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Preface

This volume contains a record of the lectures given at the ICTAC Training
School on Domain Modelling and Duration Calculus, held during the 17th–21st
September 2007 in Shanghai. The School was organised by East China Normal
University, UNU-IIST, and the University of York as part of the celebrations
of the 70th birthdays of Dines Bjørner and Zhou Chaochen. There were two
associated events:

– Essays in Honour of Dines Bjørner and Zhou Chaochen on the Occasion of
their 70th Birthdays. Papers presented at a Symposium held in Macao on
24th & 25th September 2007. LNCS volume 4700. Springer 2007.

– Proceedings of the International Colloquium on Theoretical Aspects of Com-
puting. Held in Macao during 26th–28th September 2007. LNCS volume
4711. Springer 2007.

The school is aimed at postgraduate students, researchers, academics, and
industrial software engineers who are interested in the state of the art in these
topics. No previous knowledge of the topics involved is assumed. Two of the
courses are in the area of domain engineering (and in formal, abstract modelling
in general) and two are in the area of duration calculus; the fifth links the two
areas. The five courses are taught by experts in these fields from Europe and
Asia.

We are happy to acknowledge sponsorship from the following organisations:

– China International Talent Exchange Foundation
– East China Normal University
– United Nations University International Institute for Software Technology
– University of York

The proceedings were managed and assembled using the EasyChair conference
management system.

Contributors

Alan Burns is a professor of computer science at the University of York. His
research interests are in real-time systems, including the assessment of real-time
programming languages, distributed operating systems, the formal specification
of scheduling algorithms and implementation strategies, and the design of de-
pendable user interfaces to real-time applications.

Dang Van Hung is a research fellow of UNU-IIST. He received a doctoral-level
degree in computer science in 1988 from the Computer and Automation Research
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Institute, Hungarian Academy of Sciences. His research interests include formal
techniques of programming, concurrent and distributed computing, and design
techniques for real-time systems.

Chris George is the Associate Director of the United Nations International
Institute for Software Technology (UNU-IIST) in Macao. He is one of the main
contributors to RAISE, particularly the RAISE method, and that remains his
main research interest. Before coming to UNU-IIST he worked for companies in
the UK and Denmark.

Michael Reichhardt Hansen is an associate professor at the Technical Uni-
versity of Denmark. His research interests include duration calculus, interval
logic, and formal methods. He is one of the authors of the book Duration Cal-
culus with Zhou Chaochen.

Cliff Jones was a professor at the University of Manchester, worked in indus-
try at Harlequin for a period, and is now a professor of computing science at
Newcastle University. He is Editor-in-Chief of the Formal Aspects of Computing
Journal. He undertook the DPhil at Oxford University Computing Laboratory
under Prof. Sir Tony Hoare frs, awarded in 1981. He worked with Dines Bjørner
and others on the Vienna Development Method (VDM) at IBM in Vienna. He
is a Fellow of the Royal Academy of Engineering.

Lecture Courses

Course 1: Delivering Real-Time Behaviour. This series of lectures is given
by Alan Burns, and it focuses on how to engineer systems so that they can meet
their timing requirements. Four separate, but related, issues are addressed.

1. A time band model that caters for the broad set of granularities found in a
typical complex system.

2. The delay and deadline statements that allow timing requirements to be
specified.

3. Scheduling analysis that enables a set of concurrent deadlines to be verified.
4. Timing analysis that enables sequential code to be inspected to determine

its worst case behaviour.

These four topics—together with a number of other techniques and tools de-
scribed in the course—allow real-time behaviour to be delivered.

Course 2: Applicative Modelling with RAISE. This course—given by
Chris George—provides an introduction to the RAISE Specification Language
and to the RAISE method. The course concentrates on the applicative style of
RAISE, the style most commonly used initially in development. It also describes
two examples. The first is a simple communication system that allows the trans-
mission of messages with the possibility of higher priority messages overtaking
others. The example illustrates the use of abstract initial specification to capture
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vital properties, and of more detailed concrete specification to describe a model
having those properties. The second example is a control system of a lift and
illustrates the use of model checking to gain confidence in a RAISE model.

Course 3: A Theory of Duration Calculus with Application. This course
is given jointly by Dang Van Hung and Michael Hansen. It presents selected
central elements in the theory of the duration calculus and gives examples of
applications. The lectures cover syntax, semantics, and a proof system for the
basic logic. Results on decidability, undecidability, and model-checking are also
presented. Some extensions of the basic calculus are described; in particular,
hybrid duration calculus and duration calculus with iterations. The concepts are
illustrated by a case study: the bi-phase mark protocol. References are provided
for further study.

Course 4: Understanding Programming Language Concepts via Op-
erational Semantics. Cliff Jones’s lectures cover five topics.

1. History of Verification. This is based on his Annals of the History of
Computing paper [Jon03]; this lecture adds more on semantics.

2. Rely/Guarantee Method. The most accessible reference for this is [Jon96]
but the origins lie a long way back [Jon81,Jon83a,Jon83b] (see the exten-
sive list of publications on various forms of rely/guarantee conditions at
homepages.cs.ncl.ac.uk/cliff.jones/home.formal).

3. Deriving Specifications. This lecture is described in the accompanying
Festschrift volume [JHJ07]; there is an earlier conference paper [HJJ03]).

4. Semantics of Programming Languages. This lecture is published in this
volume. Chris George covers the idea of abstract modelling in general; Cliff
Jones focuses on the application of this idea to programming languages.

5. Soundness of Rely/Guarantee Proof Rules. This final lecture justifies
a set of proof rules like those introduced in Lecture 2 based on a semantics
like that in Lecture 4. The proof is published in [CJ07]. This material links
to “Refining Atomicity” [JLRW05,BJ05,Jon05,Jon07].

July 2007 J. C. P. W.
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Delivering Real-Time Behaviour

Alan Burns and Andy Wellings

Real-Time Systems Research Group
Department of Computer Science

University of York, UK
{burns,andy}@cs.york.ac.uk

Abstract. This paper focuses on how we can engineer systems so that they can
meet their timing requirements. Four separate, but related, issues are addressed:
a time band model that caters for the broad set of granularities found in a typ-
ical complex system, the delay and deadline statements that allow timing re-
quirements to be specified, scheduling analysis that enables a set of concurrent
deadlines to be verified and timing analysis that enables sequential code to be
inspected to determine its worst case behaviour. These four topics together with
a number of other techniques and tool described in the paper allow real-time be-
haviour to be delivered.

1 Introduction

In the construction of real-time systems it is vital to ensure that timing requirements
are satisfied by the system under development. To do this requires a number of differ-
ent techniques that must be integrated into an engineering process[13]. In this paper
we support the rigorous verification of timing requirements by proposing an engineer-
ing process and populating it with existing/modified methods such as model checking,
schedulability analysis and timing analysis. The development of large computer-based
systems, with embedded components, imposes a number of significant challenges, both
technical and organisational. Their complexity makes all stages of their development
(requirements analysis, specification, design, implementation, deployment and mainte-
nance/evolution) subject to failure and costly re-working. Even the production of an
unambiguous behavioural description of an existing system is far from straightforward.

The process discussed here by which real-time behaviour is delivered comes from
the synergy of many existing methods and proposals. It is not entirely formal but is
strongly influenced by the need to engineer real systems with industrial strength tools
and methods. The key dimensions of the process are:

1. Time bands – to situate the proposed system in a finite set of distinct time scales.
2. Delay and Deadline Primitives – to capture timing requirements in each band.
3. Scheduling analysis – to manage the resources needed at each band to ensure the

system makes appropriate progress (i.e. meets its deadlines).
4. Timing analysis – to ensure activities defined within a single band have a bounded

resource requirement.

These four dimensions are supported by

C. George, Z. Liu, and J. Woodcock (Eds.): Domain Modeling, LNCS 4710, pp. 1–50, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



2 A. Burns and A. Wellings

– A modelling and verification formalism based on a restricted use of Timed Au-
tomata in which timing requirements within an automaton are represented by delay
and deadline conditions.

– A program model that utilises common pattern to implement the require behaviour
– typical patterns being periodic and sporadic processes, consumer/ producer rela-
tions and shared objects. The program model can be realised in languages such as
Spark [26].

One characteristic of computer-based systems is that they are required to function at
many different time scales (from microseconds or less to hours or more). Time is clearly
a crucial notion in the specification (or behavioural description) of computer-based sys-
tems, but it is usually represented, in modeling schemes for example, as a single flat
physical phenomenon. Such an abstraction fails to support the structural properties of
the system, forces different temporal notions on to the same flat description, and fails
to support the separation of concerns that the different time scales of the system facili-
tate. Just as the functional properties of a system can be modeled at different levels of
abstraction or detail, so too should its temporal properties be representable in different,
but provably consistent, time scales.

To make better use of ‘time’, with the aim of producing more dependable embedded
systems, we propose a framework that explicitly identifies a number of distinct time
bands in which the system under study is situated [11,10]. Within each time band, tim-
ing requirements are represented by delay and deadline primitives. Delay ensures the
technical system does not ‘get ahead’ of its environment; deadlines ensure the system
does not get too far behind. The key role of the implementation (as well as obvious func-
tional correctness) is to satisfy the deadline constraints. To examine these constraints,
the sequential code must be amenable to timing analysis and the concurrent system
amenable to scheduling analysis.

The four dimensions identified above are addresses in the four main sections of this
paper. First, time bands are motivated and then described. Next timing requirements
within each bands are considered using delays and deadlines. Then schediling analy-
sis is outlined and finally a brief review of timing analysis is given. Conclusions are
provided in section 6.

2 Time Bands

The aim of this section of the paper is to motivate a modeling framework in which a
multi-banded representation of time is advocated. Much of this material is necessarily
focused on an informal description of the framework. A brief discussion on the formal-
isation of the framework in provided in a later section (2.8).

The framework enables the temporal properties of existing systems to be described
and the requirements for new or modified systems to be specified. The concept of time
band comes from the work of Newell [43] in his attempts to describe human cogni-
tion. Newell focuses on hierarchical structures within the brain and notes that different
time scales are relevant to the different layers of his hierarchy. By contrast, we put the
notion of a time band at the centre of our framework. It can then be used within any
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organisational scheme or architectural form — for they all lead to systems that exhibit
a wide variety of dynamic behaviours.

2.1 Informal Description of the Framework

The domain of any large computer-based system exhibits dynamic behaviour on many
different levels. The computational components have circuits that have nanosecond
speeds, faster electronic subcomponents and slower functional units. Communication
on a fast bus is at the microsecond level but may be tens of milliseconds on slow or
wide-area media. Human time scales as described above move from the 1ms neuron
firing time to simple cognitive actions that range from 100ms to 10 seconds or more.
Higher rational actions take minutes and even hours. At the organisational and social
level, time scales range from a few minutes, through days, months and even years. Per-
haps for some environmentally sensitive systems, consequences of failure may endure
for centuries. To move from nanoseconds to centuries requires a framework with con-
siderable descriptive and analytical power.

Most formulations that attempt to identify time granularity do so by mapping all
activities to the finest granularity in the system. This results in cumbersome formulae,
and fails to recognise the distinct role time is taking in the structuring of the system. An
exception is the work of Corsetti et al[21,16]; they identify “a finite set of disjoint and
differently grained temporal domains”. Their framework is not as extensive as the one
developed here, but they do show how the notion of temporal domains can be embedded
into a logical specification language. We are not aware of any other work that uses the
existence of distinct time scales as the basis of system modeling.

2.2 Definition of a Band

A band is represented by a granularity (expressed as a unit of time that has meaning
within the band) and a precision that is a measure of the accuracy of the time frame de-
fined by the band. The precision of a band defines the tolerance over the requirements
for two or more events to occur simultaneously. System activities are placed in some
band B if they engage in significant events at the time scale represented by B. They have
dynamics that give rise to changes that are observable or meaningful in band B’s gran-
ularity. So, for example, at the nanosecond band, gates are firing; at the 10 millisecond
band, human neural circuits are firing, significant computational functions are complet-
ing and an amount of data communication will occur. At the five minute band, work
shifts are changing, meetings are starting, etc. For any system there will be a highest
and lowest band that gives a temporal system boundary — although there will always
be the potential for larger and smaller bands. Note that at higher bands the physical
system boundary may well be extended to include wider (and slower) entities such as
legislative constraints or supply chain changes.

Time has both discrete and continuous characteristics within the framework. Both are
needed to capture the essential properties of complex systems; the term hybrid system is
often used to indicate this dual need. A time band defines a temporal frame of reference
(e.g., a clock that ticks at the granularity of the band) into which discrete actions can
easily be placed. But continuous entities can also be placed in this band if they exhibit
significant observable events on this time scale. For these entities, time is continuous
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but significant events occur at a frequency of no more than (but close to) once per ‘tick’
of the band’s abstract clock.

By definition, all activities within band B have similar dynamics. Within any mod-
eling framework there is considerable advantage in assuming that actions are instanta-
neous. They represent behaviours that are atomic; the combined behaviour of a number
of concurrent yet atomic actions is easy to assert as there is no interference between
behaviours. However in real-time embedded systems it is also necessary to consider the
real duration of actions. Within a band, activities have duration whilst events are instan-
taneous — “take no time in the band of interest”. Many activities will have a repetitive
cyclic behaviour with either a fixed periodicity or a varying pace. Other activities will
be event-triggered. Activities are performed by agents (human or technical). In some
bands all agents will be artificial, at others all human, and at others both will be evident.
The relationship between the human agent and the time band will obviously depend on
the band and will bring in studies from areas such as the psychology of time [27,28,47]
and the sociology of time [39]. Embedded software will populate a number of bands,
the execution time of a single instruction will denote one band, the completion of dis-
tinct unit funtions are best described at another band, and complete schedulable tasks
will typically be mapped to yet another band.

In the specification of a system, an event may cause a response ‘immediately’ –
meaning that at this band the response is within the granularity of the band. This helps
eliminate the problem of over specifying requirements that is known to lead to imple-
mentation difficulties [33]. For example, the requirement ‘when the fridge door opens
the light must come on immediately’ apparently give no scope for an implementation
to incorporate the necessary delays of switches, circuitry and the light’s own latency.
By making the term ‘immediate’ band specific, it enables a finer granularity band to
include the necessary delays, latencies and processing time that are needed to support
the immediate behaviour at the higher band.

Events that are instantaneous at band B map to activities that have duration at some
lower band with a finer granularity – we will denote this lower band as C. A key prop-
erty of a band is the precision it defines for its time scale. This allows two events to
be simultaneous (“at the same time”) in band B even if they are separated in time in
band C. This definition of precision enables the framework to be used effectively for
requirements specification. A temporal requirement such as a deadline is band-specific;
similarly the definition of a timing failure. For example, being one second late may be
a crucial failure in a computing device, whereas on a human scale being one second
late for a meeting is meaningless. The duration of an activity is also ‘imprecise’ (within
the band). Stating that a job will take three months is assumed to mean plus or minus a
couple of days. Of course the precision of band B can only be explored in a lower band.

From a focus on band B, two adjacent bands are identified. The slower (broader)
band (A) can be taken to be unchanging (constant) for most issues of concern to B (or
at least any activity in band A will only exhibit a single state change during any activity
within band B). At the other extreme, behaviours in (the finer) band C are assumed
to be instantaneous. The actual differences in granularity between A, B and C are not
precisely defined (and indeed may depend on the bands themselves) but will typically be
in the range 1/10th to 1/100th. When bands map on to hierarchies (structural or control)
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then activities in band A can be seen to constrain the dynamics of band B, whereas those
at C enable B to proceed in a timely fashion. The ability to relate behaviour at different
time bands is one of the main properties of the framework. For example, when focusing
on the behaviour of an embedded system task, the computation time of each instruction
can be assumed to be zero. This is not to say that a significant series of instructions
will not take time to execute, but that the duration of a single instruction can be ignored
when evaluating the temporal behaviour of the software at the task level.

As well as the system itself manifesting behaviour at many different time bands, the
environment will exhibit dynamic behaviour at many different granularities. The bands
are therefore linked to the environment at the level determined by these dynamics. In
many system abstractions it is useful to assume the environment is in some form of
steady state. But this assumption is clearly false as environments evolve, perhaps as a
result of the deployment of the embedded system under development. By mapping the
rate of this evolutionary change to an appropriate (relatively slow) time band one can
gain the advantage of the steady state abstraction whilst not ignoring slower dynamics.

2.3 Behaviour Within a Band

Most of the detailed behaviour of the system will be specified or described within bands.
Issues of concurrency, resource usage, scheduling and planning, response time (dura-
tion) prediction, temporal validity of data, control and knowledge validity (agreement)
may be relevant at any band.

We do note however that with human agents (and potentially with artificial learning
agents) time itself within a band will play a central role. Time is not just a parameter of
a band but a resource to be used/abused within the band. Users will interpret system be-
haviour from temporal triggers. In particular the duration of an activity will be a source
of knowledge and possibly misconceptions; and may be used to give validity (or not)
to information, or to infer failure. This use of temporal information to infer knowledge
is termed temporal affordance [19]. For some bands, agreement (distributed consensus)
may depend heavily on such affordances. Plans, schedules or even just routines may
give rise to these affordances. Affordances provide robustness; they may be defined
into the system but are often developed informally over time by the users of the system.
They may be extremely subtle and difficult to identify. Nevertheless the movement of
an activity from one band to another (usually a quicker one) may undermine existing
affordances and be a source of significant decreased dependability.

Within a band, a coherent set of activities and events will be observed or planned,
usually with insufficient agents and other resources. Robustness and other forms of fault
tolerance will also play a crucial role in the description/specification of the behaviour
within a band. The specification of some behaviours will require a functional view of
time that places ‘time’ at the centre of the design process. To support this process a
range of visualisation, modeling and analysis techniques are available including, timed
sequence charts, control theory, scheduling analysis, constraint satisfaction, queueing
theory, simulation, temporal and real-time logics, timed automata, timed Petri nets, hy-
brid automata, model checking and FMEA (failure modes and effects analysis).

In all bands, a common set of temporal phenomena and patterns of behaviour are
likely to be exhibited by the system itself or its environment. For example, periodic (or
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regular or cyclic) activities, event handling (responding to an event by a deadline), tem-
poral reasoning (planning and scheduling), interleaving and multi-tasking (and other
aspects of concurrency), pausing (or delaying), analysis of response (or completion)
time, deadline driven activities, and various aspect of dynamic behaviour such as rates
of change. Whilst evident in all bands, these phenomena are not identified using the
same terminology in the various time bands of interest (i.e., in the technical, psycho-
logical and sociological literature).

2.4 Behaviour Between Bands

To check the coherence of a description, or the consistence of a specification, for a
complex embedded system, requires behaviours between bands to be examined. This
involves two issues:

1. the relationship between the bands themselves, and
2. the mapping of activities and events between bands.

The link between any two bands is expressed in terms of each band’s granularity and
precision. Usually the finer of the two bands can be used to express these two measures
for the broader band. Where physical time units are used for both bands these relations
are straightforward. For example a band that is defined to have a granularity of an hour
with a precision of 5 minutes is easily linked to a band with a granularity of 10 seconds
and precision of half a second. The granularity relation is a link from one time unit (1
hour) in the higher band to 360 units in the lower band. The precision of 5 minutes
means that a time reference at the higher band (e.g., 3 o’clock) will map down to the
lower band to imply a time reference (interval) between 2.55 and 3.05.

Granularity can however give rise to a more complex link. In particular, the duration
of activities in the lower band may not be the same for all corresponding activities in
the higher one. For example, a band with a granularity of ‘one month’ when linked to
a band with a granularity of ‘one day’ can give rise to a granularity of 28, 29, 30 or 31
days. Here precision is exact, both bands may have the same notion of accuracy about
the time reference.

The mapping of actions between high and low bands is restricted to: event to event,
or, event to activity relations. So an event in some band can be identified as being
coupled to (implemented by) an event or activity in some lower band. A specific named
activity exists in one, and only one, band. But for all activities there are events within
the same band that are defined to denote the start and end of an activity – these events
can be mapped to finer bands. Moreover the whole activity may be seen as an event in
a broader band. Figure 1 illustrates three bands (A, B and C) with an event E in band A
being mapped to activity X in band B. The start and end events of this activity can then
associated with activities in band C.

To exercise these concepts, consider the planning of a university curriculum. When
planning courses on a term-by-term basis, a lecture is an event. When planning room
allocations, a lecture becomes an activity of duration one or two hours (with precision 5
minutes). When planning a lecture, each slide is an event (with an implicit order). When
giving a lecture each slide is an activity with duration. This description could be given
in terms of a number of bands and mappings of events to activities in finer bands. Note
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Band B

Band C

Band A

Event E in Band A

Activity X in Band B

Activity Z in Band C

Fig. 1. Time Band Example

when focusing on the band in which slides have duration it is not possible or appropriate
to consider the activities in higher bands that represent whole courses or semesters. The
time bands therefore correctly help separate concerns. Students may learn that the time
spent on a slide implies importance (at least in terms of the likelihood of the topic
turning up in an exam). This is an example of a temporal affordance. Also illustrated
by this situation is the difference between planned behaviour (as one moves down the
time bands) and emergent properties that enable students to structure the knowledge
and understanding they have obtained in many different ways during their progression
through their degree course.

The mapping of an event in one band to an activity within another (lower) band
has many of the properties of refinement, in the sense that the activity ‘implements’ the
event. But the event still exists (e.g. the lecture as an event in the planning of a semester),
it is not just an abstraction used to guide implementation. Moreover the activity may
have additional properties (e.g. emergent properties or failure modes) that cannot easily
be seen as a refinement of the event.

To return to the crucial issue of coherence and consistency between bands, the pro-
posed framework facilitates this by making explicit the vertical temporal relationships
between bands. Specifically, it becomes possible to check that the temporal mapping
between event E in band A with activity X in band B is consistent with the bounds on
the relationship identified between bands A and B. Moreover this consistency check can
be extended to ordered events and causality (see next section).

2.5 Precedence Relations, Temporal Order and Causality

For the time bands associated with computational activity there is usually a strong no-
tion of time and (adequately accurate) physical clocks that will aid scheduling and co-
ordination. This is also increasingly the case with the bands of human experience as
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external sources of time and temporal triggers abound. But there are contexts in which
order is a more natural way of describing behaviour [1,32] (X was before Y, e.g., “be-
fore the end of the shift”, “after the plane took off”, “before the flood”, “after the thread
has completed”, “before the gate has fired”). The framework must therefore represent
both precedence relations and temporal frames of reference. A frame of reference de-
fines an abstract clock that counts ticks of the band’s granularity and can be used to give
a time stamp to events and activities. A band may have more than one such abstract
clock but they progress at the same rate. For example the day band will have a different
clock in each distinct geographical time zone.

There is of course a strong link between temporal order (i.e., time stamped events
and activities) and precedence relations. However, in this framework, we do not impose
an equivalence between time and precedence. Due to issues of precision, time cannot
be used to infer precedence unless the time interval between two events is sufficiently
large in the band of interest.

We develop a consistent model of time by representing certain moments in the dy-
namics of a band as “clock tick” events, which are modeled just like any other event.
When necessary, an event can be situated in absolute time (within the context of a de-
fined band and clock) by stating a precedence relationship between the event and one
or more clock ticks.

Precedence gives rise to potential causality. If P is before Q then information could
flow between them, indeed P may be the cause of Q. In the use of the framework for
specification we will need to use the stronger notion of precedence to imply causality.
For example, “when the fridge door opens the light must come on”. As noted earlier
within the band of human experience this can be taken to be ‘immediate’ and modeled
as an event. At a lower band a number of electromechanical activities will be needed to
be described that will sense when the door is open and enable power to flow to the light.
Importantly, no causality relationship can be inferred (without explicit precedence) for
two events occurring at the same time within their particular band. In effect they are
logically concurrent and may occur in sequence or overlapped in time when mapped to
a lower band.

With instantaneous events it is straightforward to specify precedence i.e. e1 → e2
(in same band B). However when one maps e1 and e2 to a lower band and activates a1
and a2, what is the relationship between a1 and a2? It is too strong to require all of a2
to occur after all of a1. Indeed it is potentially restrictive to assume all of a2 occurred
after the start of a1. We require, in terms of a framework definition, the weakest coherent
property:

e1→ e2⇒ ∃ f1, f2 • f1 ∈ a1 ∧ f2 ∈ a2 ∧ f1→ f2

That is, some event in a1 is before some event in a2. The mapping of f1 and f2 to
yet another lower band will again preserve this level of precedence.

Where bands are, at least partially, ordered by granularity, then order and hence po-
tential causality is preserved as one moves from the finer to the coarser bands. However,
as noted above, order and causality are not necessarily maintained as one moves down
through the bands. This is a key property of the framework, and implies that where or-
der is important then proof must be obtained by examining the inter-band relationship
(as discussed above).
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2.6 Hierarchical Resource Management

One of the challenges emerging from the next generation of embedded systems is the
management of the diverse resources available on such platforms. These include vari-
ous processing cores, areas of FPGA, buses of various speeds and capacities, networks
both on chip (NoC) and external, specialised accelerators and different I/O devices. The
management of these resources needs to deliver coordinated access, near optimal per-
formance and adaptable allocation. Verification of these platforms is usually performed
by stimulation. But it is clear that the types of simulation used to verify circuits will not
scale to multi-core chips, multi-chip systems and systems of systems.

One means of controlling and verifying resource usage is to map the usage pattern
of the resources on to distinct time bands and to use a combination of modeling and
simulation to build up a hierarchical model of resource usage. Simulation at one time
band uses a model of events from a lower band. The simulations then validate a model
that can be used at the next higher band. This gives a clear framework to the hierarchial
approaches advocated by some researcher [44,29].

The integrated scheduling of such resources can also be delivered by hierarchical
scheduling approaches – a number of which have been described in the literature re-
cently, see for example [22]. Again, using a clear time band separation between the
levels of the scheduling hierarchy will facilitate the composability of these approaches.
The general topic of scheduling, as it applies to a single band, is discussed in Section 4.

2.7 Hierarchical (Cascade) Control

Many embedded systems have a control function, and most of these use some form
of feedback control. The time constraints for these control loops are determined by
the dynamics of the controlled object and are naturally partitioned using the time band
framework. Moreover, in more complex situations control loops form a cascade. The
inner loop drives some environmental value towards a defined constant. The outer loop,
on a much longer time scale is modifying this ‘constant’. This structure can be re-
peated a number of times. Each control loop is positioned in a time band that can as-
sume the parameters set by an upper time band are unchanging. But these parameters
are themselves subject to change which is managed by feedback control within that
band.

The positioning of hierarchical loops within distinct time bands can propagate out of
the purely technical sphere. Human operators may use their observations of the system
to modify control objectives within the minute or hour time bands, and the organisation
may modify overall system objectives at high time bands such as those at the month
or year level. Longer time scale still influence the objectives of the owner organisation.
For example, in the electricity power generation field[2] one can identify the following
time bands - all of which contain activities that aim to control the behaviour at lower
levels – microseconds (wave effects and surges), milliseconds (switching), 100 mil-
liseconds (fault protection, electromagnetic effects), seconds (stability augmentation),
10 seconds (frequency control), minutes (frequency control and load dispatching), hour
(load management), day (load forecasting), month (maintenance scheduling), year (ex-
pansion planning) and 10 year (power plant site selection etc).
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2.8 Time Band Model

In this section we provide a more precise definition of some of the concepts introduced
above. This model forms the basis of later work to define a complete logic for the time
bands which can then lead to the production of tools to support the use of banded time.
There are eight central notions in the model:

– Bands
– Activities
– Events
– State
– Precedence Relations
– Clocks
– Mappings
– Behaviours

Bands. A band is defined by its granularity. This establishes a unit of time for the band.
Bands are related to one another by the relationship between their granularities; this
relates the ‘unit’ in one (the higher) band to an integer number of ‘units’ in the lower
band. A system is assumed to consist of a partially ordered finite set of bands. If two
or more events are defined to be at the same time within some band then they must be
mapped to activities that contain events that occur within the precision of the original
band.
Activities. An activity is an item of work undertaken by some agent. All state changes
and effects on the system environment occur within activities. Each activity is bound to
one band and has duration in that band.
Events. An event is an activity with zero duration. The start and end of any activity is
denoted by an event.
State. State predicates may exist within any band. A state transition is an event within
that band.
Precedence Relations. Two events from the same band have a precedence relation if
one is defined to occur before the other.
Clocks. A band may have one or more abstract clocks that define temporal frames of
reference within the band. Each such clock counts in ticks and measures the passing of
time in the units of time of the band.
Mappings. A mapping is the means of relating behaviours in one band to those in
another. Specifically a mapping associates an event in one band to an activity in a lower
band. The mapping of a clock tick’s start event in one band to an activity with duration
in another band leads to the definition of the band’s precision. It is precisely the duration
of the associated activity (hence precision is a property of the relationship between two
bands).
Behaviours. A behaviour is a set of activities and events (within the same band), par-
tially ordered by precedence, giving rise to concurrent and sequential composition of
behaviours.

A large number of relevant formalisms exist that could be used (directly or with
extensions) to define the time band model. Timed process algebras (e.g. Timed CSP),
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temporal logics and Durations Calculus all have useful properties. Current work in-
volves the evaluation of these approaches, in particular the combined use of Duration
Calculus and CSP.

2.9 Summary

Rather than have a single notion of time, the proposed framework allows a number of
distinct time bands to be used in the specification or behavioural description of a system.
System activities are always relative to (defined within) a band. A (non-event) activity
has duration of one or more ticks of the band’s granularity. Events in a band take no
time in that band, but will have a correspondence with activities within a lower band. It
follows that a number of events can take place “at the same time” within the context of
a specified band. Similarly responses can be “immediate” within a band.

Precedence relations between activities and events are an important part of the frame-
work and allow causal relations to be defined without recourse to explicit references to
time. Moreover they can be used to define clock tick events within a band, and hence
link other events to the absolute time of the band.

We require all time bands to be related but do not require a strict perfect mapping.
Each band, other than the lowest, will have a precision that defines (in a lower band)
the tolerance of the band. However within these constraints we do need to be able to
show that system descriptions at different bands are consistent. For this to be possible a
formal description is required.

In this section we have argued that complex embedded systems exhibit behaviour
at many different time levels and that a useful aid in describing and specifying such
behaviour is to use time bands. Viewing a system as a collection of activities within a
finite set of bands is an effective means of separating concerns and identifying incon-
sistencies between different ‘layers’ of the system. Time bands are not mapped on to a
single notion of physical time. Within a system there will always be a relation between
bands but the bands need not be tightly synchronised. There is always some level of
imprecision between any two adjacent bands. Indeed the imprecision may be large in
social systems and be a source of dependability (robustness).

Within each time bands there will be the need to specify and deliver timely behaviour.
Deadlines exist at all levels, although the notion of missing a deadline is relative to the
precision of the band. Being 10ms late for a meeting is meaningless, however being 10
minutes late may be significant, and being 10ms late to deliver a signal in an unstable
aircraft may be more than enough to induce failure. Timing constraints are also linked
to patterns of behaviour that can again be seen in all bands. Regular repeated activities,
time triggered activities and event and exception handling are all likely to occur at all
levels. In the next section we introduce the primitives necessary for these temporal
concerns to be addressed.

3 Temporal Scopes – Delays and Deadlines

To facilitate the specification of the various timing constraints found in real-time appli-
cations, it is useful to introduce the notion of temporal scopes. Each band will contain
such scopes with timing values reflecting the granularity and precision of each band.
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Temporal scopes identify a collection of actions with an associated timing constraint.
The possible attributes of a temporal scope (TS) for a single computational band are
illustrated in Figure 2, and include

1. deadline – the time by which the execution of a TS must be finished;
2. minimum delay – the minimum amount of time that must elapse before the start of

execution of a TS;
3. maximum delay – the maximum amount of time that can elapse before the start of

execution of a TS;
4. maximum execution time – of a TS;
5. maximum elapse time – of a TS.

Temporal scopes with combinations of these attributes are also possible.

Now

Time

a

b

c

Deadline

Minimum
delay Maximum

delay

Maximum
elapsed
time

Unit of execution
Maximum execution time =    +    +a b c

Fig. 2. Temporal Scopes

Temporal scopes can themselves be described as being either periodic or aperiodic.
Typically, periodic temporal scopes sample data or execute a control loop and have
explicit deadlines that must be met. Aperiodic, or sporadic, temporal scopes usually
arise from asynchronous events. These scopes have specified response times associated
with them.

In general, aperiodic temporal scopes are viewed as being activated randomly, fol-
lowing, for example, a Poisson distribution. Such a distribution allows for bursts of
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arrivals of external events, but does not preclude any possible concentration of aperi-
odic activity. It is therefore not possible to do worst-case analysis (there is a non-zero
probability of any number of aperiodic events occurring within a given time). To al-
low worst-case calculations to be made, a minimum period between any two aperiodic
events (from the same source) is often defined. If this is the case, the process involved
is said to be sporadic.

In many real-time languages, temporal scopes are, in effect, associated with the
processes that embody them. Processes can be described as either periodic, aperiodic
or sporadic depending on the properties of their internal temporal scope. Most of the
timing attributes given in the above list can thus be satisfied by:

1. running periodic processes at the correct rate;
2. completing all processes by their deadline.

To ensure that the correct rate is observed it is necessary to delay the activity until
‘real-time’ has caught up with the activity. Periodic activities typically have a common
pattern. The use of delay to ‘slow an activity down’ and deadline ‘to make sure the
activity goes fast enough’ together allow most (if not all) timing requirements to be
specified. For example the following code pattern illustrates a periodic activity which
has a period of 100ms and a deadline of 30ms.

period := 100ms
deadline_value := 30ms
T := clock
loop

-- code of the activity
deadline(T + deadline_value)
T := T + period
delay(T)

end loop

We now consider these the delay and dealdine primitives in more detail.

3.1 Deadline and Delay Primitives

Fidge et al. [25] introduce the deadline primitive to express explicitly deadlines in pro-
gramming languages that lack this primitive (e.g. Ada and Java). They argue that the use
of delay and deadline together allow a wide range of timing properties to be expressed.
They define the two primitives using a function Clock that reads the current absolute
time within the current band and a variable now that has the property Clock ≤ now.
The delay statement (using Ada/SPARK syntax):

delay until t + 10;

is formally defined as making the following true:

t + 10 ≤ now

Similarly the deadline statement (which is not available in Ada):
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deadline t + 13;

is formally defined as making the following true:

now ≤ t + 13

Here we use these primitives within the modeling framework provided by UPPAAL.
For example, a template automaton in UPPAAL for a simple periodic task which cycles
every 100ms and completes all its activities within 30ms is as follows:

start activity

clk<=30 wait

clk<=100

clk==100clk:=0

Variable clk represents a clock, which can be either global or local. As the names
suggest, a global clock is available for all automata in a model, whereas a local clock is
only available for the automaton which declares/introduces it. Although more than one
clock can be declared, they progress at the same rate.

A state, for example activity and wait in the above example, may have a clock
invariant which must remain true; similarly a transition may have a temporal guard
which must be true for the transition to be taken, So in the above, the automaton must
leave state wait when clk is exactly 100. As the transition is taken clk is reset to
zero. The clock invariants represent system deadlines and are the only means of forcing
progress.

State activity represents the work of the automaton, where the activity has
further temporal properties the automaton is expanded. If any automaton has conflicting
invariants and guards then model checking will detect a deadlock in the model.

The location with the symbol “∪” is an urgent location. Urgent locations do not
allow the model to stop at these locations – the execution can stay at an urgent location
as long as the clock does not progress. As expected, at least one output transaction from
an urgent location must be enabled/possible, otherwise the model will deadlock. The
form of TA used here makes little use of these locations. They are only employed in
initial states and to model choice.

3.2 Rely and Guarantee Primitives

In a concurrent system, tasks usually cooperate to define the behaviour of the system.
As such, the dependence relation among tasks should be made explicit. For example,
in a producer-consumer system, tasks can be used to implement the producer and the
consumer, and a shared object can be used to encapsulate the shared data and ensure
that it is only accessed under mutual exclusion.

The producer task might or might not require the presence of a consumer task, and
the consumer task might require the presence of a particular producer task. A task might
use some subprograms of a shared object (or monitor) while requiring some other task
to use other subprograms of the same shared object.
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While some relations might sound obvious, clearly a cooperative/distributed system
that models a producer-consumer system is wrong if, for example, a producer task is
missing. Unless there is some way to make it explicit that a consumer task depends on
the existence of a producer task, such properties cannot be statically verified.

In this work [13] we propose annotations to specify temporal rely and guarantee
conditions [34] following Whysall’s [51] use of these conditions on shared objects in
his ZERO system. The rely/guarantee conditions express the allowable interference be-
tween tasks that use the same object.

As a simple example, assume that there is a periodic task Producer that is required
to produce an item and store it in a shared object Buffer every 150ms. An item can
be produced earlier in relation to the previous item, but no latter than 150ms after the
previous item. We are free to choose both deadline and period for Producer1. An
obvious choice is the one in which deadline+period is equal to 150ms, hence, we assume
that the deadline is 70ms and the period is 80ms. The simple TA model is presented in
Figure 3.

start
begin

clk<=70

wait

clk<=80

end

clk<=70

store!

clk==80

clk:=0

start hold
store?

clk:=0

Producer Buffer

Fig. 3. Timed guarantee condition

This model has two automaton (Producer and Buffer) each with its own clock
(clk). Identifier store is a standard channel and is used to model a subprogram call
to place an item in Buffer. The clock clk of Buffer is reset to 0 every time a
synchronization is performed through the channel store.

To verify compliance to the timing requirement, the following properties must be
proved to hold:

A[] not deadlock
A[] Buffer.clk <= 150

These properties are found to be true using the UPPAAL model checker. The first prop-
erty verifies that the model is deadlock free, whereas the second property verifies that

1 In general a design has a number of degrees of freedom in terms of how it satisfies the system
timing requirements. There is no formulaic way of fixing the free parameters – although they
must of course meet any constraints imposed by the requirements. Subsequent schedulability
analysis (see Section 4) may well be sensitive to these parameters, hence the need to support
some form of iteration through the process, but during the modeling phase the key need is to
support exploration of these free parameters.
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the clock clk of Buffer is always less than or equal to 150. The symbol A[] implies
“for all possible executions”.

Obviously simple models do not need the full power of model checking to verify
behaviour. A more complex example that illustrates the use of, and verification of com-
pliance to, a timed guarantee condition is presented in Section 3.3.

By adding new components to the model it is possible to verify all end-to-end prop-
erties required of the system in the particular time band under inspection. For example
in the milliseconds band, if an output must always be produced within 30ms of some
input then an automaton is added whose clock is zeroed by the arrival of the input and
reset by the output operations. This clock is then checked to make sure it never reaches
30.

3.3 An Example of the Use of Model Checking

The use of model checking to verify that a set of delay and deadline conditions are ade-
quate for the model to meet its timing requirements is illustrated by the following case
example. Consider a relatively simple (but not obvious) problem (in the milliseconds
band):2 a task, Producer, reads data from the environment via either of two devices it
has access to. A primary requirement is that it generates data, which it places in shared
object input data, with a freshness of 300ms. The two devices have different tem-
poral properties:

– device A is “smart”, it provides a reading 30ms after it is enabled;
– device B is “simple”, it must be read 10 times to gain a single reliable value – each

reading must be taken between 2ms and 4ms after it is enabled and subsequent
readings must be at least 10ms apart.

This specification thus has two free variables: the overall period P of Producer; and
the enforced delay p of the inner loop for device B (which must be greater than 10ms).
There is also the freedom to place extra deadline and delay statements in the code. From
a schedulability point of view P and p should be as large as possible. We assume at this
level of description that Producer makes a non-deterministic choice between the two
devices. We also assume overall period equal to deadline for the periodic producer task.

Parameterizations (and subsequent verification of the timing requirement, e.g dead-
line and data freshness constraints) could now be undertaken in a number of ways. If
there were only free variables then an algebraic formulation is possible. If there are
trade offs to be made (e.g. between P and p) then it may be possible to set up a linear
programming problem. However the solution may not always be found in a systematic
way. The freedom to place extra delay and deadline statements/annotations in the model
and code means there is considerable design freedom still available. We contend here
that the use of a TA model (and model checking) allows that freedom to be explored
and verification undertaken.

We will develop the automaton in stages to illustrate the procedure. A key driver
here is to include only the relevant features that refer to the temporal behaviour of the
code. First consider only the “smart” branch. Note that how the smart device is enabled

2 From [12].
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and read is not specified in the informal description. In this model, two local clocks are
necessary. One to keep track of the deadline and period of the task (clk1), and another
to ensure that the data is only retrieved 30ms after the smart device is enabled. The
location delay models this delay. The composition and storage of the data is repre-
sented by the location compose data and synchronization over the channel write,
respectively. The period of the automaton is set to 150ms.

We will add the details of read device and write shortly, but first we must
ensure that the automaton makes progress. To do this we use the technique discussed
earlier to bring the driving deadline back to all previous states. However, the forced
delay in state delay means that start must be left after 120 (a value of 121, for
example, leads to deadlock). Figure 4 illustrates the result.

initial start

clk1 <= 120

delay

clk2 <= 30

read_device_and_write

clk1 <= 150

end

clk1 <= 150

clk1 := 0

clk2 := 0

clk2 == 30
clk1 == 150 clk1 := 0

Fig. 4. Smart device

initial ready

idclk := 0

call?

idclk := 0

Fig. 5. Input data

The shared object, Input Data, is represented by the automaton in Figure 5.
Communication with the Producer automaton is via a channel named call. The
transition from read device and write to end must be changed to incorporate a
synchronization on the channel call. The freshness constraint on Input Data can
now be checked via model checking by proving that idclk never takes a value greater
than 300.

Now consider, again in isolation, the other branch (the simple sensor) as illustrated
in Figure 6 (with period of the inner loop set to 15ms).

The locations test1 and test2 are declared as urgent because they corresponds
to a logical branch.

Verification of the above model fails due to deadlock as “A[] not deadlock”
is found to be false because it is possible for location write to be entered with a value
of clk1 greater than 150 – this causes the automaton to deadlock. Changing the period
and deadline to 200 solves this problem as long as the start location is given the
constraint clk1 <= 25. Unfortunately the first path now fails; it must have a tighter
deadline of 130 imposed on its cycle (see Figure 7).
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initial start test1

end

clk1 <= 150

read_device

clk2 <= 4

test2

write
clk1 <= 150

loop

clk2 <= 15

clk1 := 0

count := 0

clk1 == 150
clk1 := 0

count == 10

clk2 := 0,
count := count+1

count < 10

clk2 > 2

count < 10

clk2 := 0
count == 10

clk2 == 15

call!

Fig. 6. Simple sensor

initial start

clk1 <= 100

delay

clk2 <= 30

read_device_and_write

clk1 <= 130

end

clk1 <= 200

clk1 := 0 clk2 := 0

clk2 == 30

call!

clk1 == 200 clk1 := 0

Fig. 7. Smart device (revisited again)

initial start_simple

clk1 <= 25

test1

end_simple

clk1 <= 200

read_device

clk2 <= 4

test2

write
clk1 <= 200

loop

clk2 <= 15

start_smart

clk1 <= 100

end_smart

clk1 <= 200

delay

clk2 <= 30

read_device_and_write
clk1 <= 130

clk1 := 0 count := 0

count == 10

clk2 := 0,
count := count+1

count < 10

clk2 > 2

count < 10

clk2 := 0
count == 10

clk2 == 15

clk1 := 0clk2 := 0

clk2 == 30

call!

clk1 == 200 clk1 == 200

call!

Fig. 8. Simple and smart devices

The final step is to combine the two paths. This is illustrated by the automaton in
Figure 8. Although both paths on their own are correct (in their temporal properties)
the combination is not. An initial execution using the smart sensor (finishing as early as
possible) followed at the next iteration by the simple sensor route (finishing as late as
allowed by the deadline statements) breaks the freshness constraint.

There are a number of ways this could be fixed. One is to add an extra delay of 70ms
to the beginning of the smart loop, as illustrated in Figure 9. Note that the location
delay start could be removed as long the guard clk1 ≥ 70 is used in the tran-
sition from start smart to delay. This guard would ensure a delay of at least 70
milliseconds.

Verification is now achieved:

A[] not deadlock
A[] Input_Data.idclk <= 300
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initial start_simple

clk1<=25

test1

end_simple

clk1 <= 200

read_device

clk2 <= 4

test2

write
clk1 <= 200

loop

clk2 <= 15

delay_start
clk1 <= 70

end_smart

clk1 <= 200

delay

clk2 <= 30

read_device_and_write
clk1 <= 130

start_smart

clk1 <= 100

clk1 := 0 count := 0

count == 10

clk2 := 0,
count := count+1

count < 10

clk2 > 2

count < 10

clk2 := 0
count == 10

clk2 == 15

clk1 := 0

clk2 == 30

call!

clk1 == 200 clk1 == 200

clk1 == 70
clk2 := 0

call!

Fig. 9. Simple and smart devices (revisited)

These properties are found to be true. It is difficult to argue that these properties
could be confidently verified without the support of model checking. However it is not
true that model checking is needed for all application requirements – many systems
have much simpler structures that can be checked by inspection.

3.4 Summary

In this section we have introduced the two main primitives that allow timing require-
ments to be specified. First, there is the delay statement that prevents an activity getting
too far ahead of its environment. If an action must take place every hour then once
completed the agent responsible must wait until the next hour is imminent. The second
primitives is the deadline statement that insures an activity occurs soon enough. If the
action that takes place hourly must be completed by five past the hour then there is a five
minute deadline on the action. Delays and deadlines combined can therefore express a
wide range of requirements.

In terms of the relationship of these primitives to time bands then they can be applied
in all bands. Obviously the values used in any delay or deadline statement must relate
to the granularity of the band being specified. Also the interpretation of the accuracy of
the statements is that the behaviour obtained is within the precision of the band.

A system makes progress (towards its deadlines) by its use of resources e.g. people,
CPUs, networks etc. The methods used to allocate these resources has a major impact
on whether progress will be sufficient for deadlines to be met. The next section deals
with the topic of resource management - or scheduling as it is usually called.

4 Scheduling

Scheduling is concerned with the allocation of resources to system activities. Here we
concentrate on a technical time band and consider the allocation of the CPU to system
processes. Scheduling theory usually encompasses two topics:

1. a means of allocating resources that takes into account the timing requirements of
the processes, and
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2. a means of predicting the worst-case behaviour of the application when this scheme
is employed.

There are, in general, a large number of different scheduling approaches. A number
of books exist on the topic[42,15]; the following is taken from Burns and Wellings [14].
We will consider here the two most popular approaches.

– Fixed-Priority Scheduling (FPS) – this is the most widely used approach and is the
main focus of this paper. Each process has a fixed, static, priority which is com-
puted pre-run-time. The runnable processes are executed in the order determined
by their priority. In real-time systems, the ‘priority’ of a process is derived from its
temporal requirements, not its importance to the correct functioning of the system
or its integrity.

– Earliest Deadline First (EDF) Scheduling. Here the runnable processes are executed
in the order determined by the absolute deadlines of the processes; the next process
to run being the one with the shortest (nearest) deadline. Although it is usual to
know the relative deadlines of each process (e.g. 25 ms after release), the absolute
deadlines are computed at run-time, and hence the scheme is described as dynamic.

The bulk of this section is concerned with FPS as it is supported by various real-time
languages and operating system standards. The use of EDF is also important and some
consideration of its analytical basis is given in the following discussions.

In the following subsections a number of elements of a scheduling approach are
outlined. The issues covered are:

– a simple process model,
– rate monotonic priority assignment,
– utilization-based tests of schedulability for fixed priority systems,
– utilization-based tests of schedulability for EDF systems,
– response time analysis for fixed priority systems,
– response time analysis for EDF systems,
– including sporadic and aperiodic processes,
– hard and soft components,
– aperiodic processes and fixed priority servers,
– aperiodic processes and EDF servers,
– processes with deadline less than period,
– proof of the optimality of deadline monotonic priority assignment,
– process interaction and blocking,
– response time and analysis and blocking,
– priority ceiling protocols,
– systems and processes with release jitter,
– processes with deadlines greater than period (arbitrary deadlines),
– fault tolerance, and
– general priority assignment.
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Table 1. Standard notation

Notation Description
B Worst-case blocking time for the process (if applicable)
C Worst-case computation time (WCET) of the process
D Deadline of the process
I The interference time of the process
J Release jitter of the process
N Number of processes in the system
P Priority assigned to the process (if applicable)
R Worst-case response time of the process
T Minimum time between process releases (process period)
U The utilization of each process (equal to C/T)
a − z The name of a process

4.1 Simple Process Model

An arbitrarily complex concurrent program cannot easily be analyzed to predict its
worst-case behaviour. Hence it is necessary to impose some restrictions on the structure
of real-time concurrent programs. This section will present a very simple model in
order to describe some standard scheduling schemes. The model is generalized in later
sections. The basic model has the following characteristics:

– The application is assumed to consist of a fixed set of processes.
– All processes are periodic, with known periods.
– The processes are completely independent of each other.
– All system’s overheads, context-switching times and so on are ignored (that is,

assumed to have zero cost).
– All processes have deadlines equal to their periods (that is, each process must com-

plete before it is next released).
– All processes have fixed worst-case execution times.

One consequence of the process’s independence is that it can be assumed that at some
point in time all processes will be released together. This represents the maximum load
on the processor and is known as a critical instant.

Table 1 gives a standard set of notations for process characteristics.

4.2 FPS and Rate Monotonic Priority Assignment

With the straightforward model outlined above, there exists a simple optimal priority
assignment scheme known as rate monotonic priority assignment. Each process is as-
signed a (unique) priority based on its period: the shorter the period, the higher the
priority (that is, for two processes i and j, Ti < Tj ⇒ Pi > Pj). This assignment is
optimal in the sense that if any process set can be scheduled (using preemptive priority-
based scheduling) with a fixed-priority assignment scheme, then the given process set
can also be scheduled with a rate monotonic assignment scheme. Table 2 illustrates a
five process set and shows what the relative priorities must be for optimal temporal be-
haviour. Note that priorities are represented by integers, and that the higher the integer,
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Table 2. Example of priority assignment

Process Period, T Priority, P
a 25 5
b 60 3
c 42 4
d 105 1
e 75 2

Table 3. Utilization bounds

N Utilization bound
1 100.0%
2 82.8%
3 78.0%
4 75.7%
5 74.3%
10 71.8%

the greater the priority. Care must be taken when reading other books and papers on
priority-based scheduling, as often priorities are ordered the other way; that is, priority
1 is the highest. In this paper, priority 1 is the lowest, as this is the normal usage in most
programming languages and operating systems.

4.3 Utilization-Based Schedulability Tests

This section describes a very simple schedulability test for FPS which, although not
exact, is attractive because of its simplicity.

Liu and Layland [40] showed that by considering only the utilization of the process
set, a test for schedulability can be obtained (when the rate monotonic priority ordering
is used). If the following condition is true then all N processes will meet their deadlines
(note that the summation calculates the total utilization of the process set):

N∑

i=1

(
Ci

Ti

)
≤ N(21/N − 1) (1)

Table 3 shows the utilization bound (as a percentage) for small values of N. For large
N, the bound asymptotically approaches 69.3%. Hence any process set with a combined
utilization of less than 69.3% will always be schedulable by a preemptive priority-based
scheduling scheme, with priorities assigned by the rate monotonic algorithm.

Three simple examples will now be given to illustrate the use of this test. In these
examples, the units (absolute magnitudes) of the time values are not defined. As long
as all the values (Ts, Cs and so on) are in the same units from the same time band, the
tests can be applied. So in these (and later examples), the unit of time is just considered
to be a tick of some notional time base.

Table 4 contains three processes that have been allocated priorities via the rate
monotonic algorithm (hence process c has the highest priority and process a the
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Table 4. Process set A

Process Period, T Computation time, C Priority, P Utilization, U
a 50 12 1 0.24
b 40 10 2 0.25
c 30 10 3 0.33

Process

a

b

c

0 10 20 30 40 50 60

Time

Process release time Executing

Process completion time – deadline met

Deadline missed
Preempted

Fig. 10. Time-line for process set A

lowest). Their combined utilization is 0.82 (or 82%). This is above the threshold for
three processes (0.78), and hence this process set fails the utilization test.

The actual behaviour of this process set can be illustrated by drawing out a time-
line. Figure 10 shows how the three processes would execute if they all started their
executions at time 0. Note that, at time 50, process a has consumed only 10 ticks of
execution, whereas it needed 12, and hence it has missed its first deadline.

The second example is contained in Table 5. Now the combined utilization is 0.775,
which is below the bound, and hence this process set is guaranteed to meet all its dead-
lines. If a time-line for this set is drawn, all deadlines would be satisfied.

Although cumbersome, time-lines can actually be used to test for schedulability. But
how far must the line be drawn before one can conclude that the future holds no sur-
prises? For process sets that share a common release time (that is, they share a critical
instant), it can be shown that a time-line equal to the size of the longest period is suf-

Table 5. Process set B

Process Period, T Computation time, C Priority, P Utilization, U
a 80 32 1 0.400
b 40 5 2 0.125
c 16 4 3 0.250
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Table 6. Process set C

Process Period, T Computation time, C Priority, P Utilization, U
a 80 40 1 0.50
b 40 10 2 0.25
c 20 5 3 0.25

ficient [40]. So if all processes meet their first deadline then they will meet all future
ones. This property is not true for systems scheduled by EDF.

A final example in given in Table 6. This is again a three-process system, but the
combined utility is now 100%, so it clearly fails the test. At run-time however, the
behaviour seems correct, all deadlines are met up to time 80 (see Figure 11). Hence the
process set fails the test, but at run-time does not miss a deadline. Therefore, the test
is said to be sufficient but not necessary. If a process set passes the test, it will meet
all deadlines; if it fails the test, it may or may not fail at run-time. A final point to note
about this utilization-based test is that it only supplies a simple yes/no answer. It does
not give any indication of the actual response times of the processes. This is remedied
in the response time approach described in Section 4.5.

4.4 Utilization-Based Schedulability Tests for EDF

Not only did the seminal paper of Liu and Layland [40] introduce a utilization-based
test for fixed priority scheduling but it also gave one for EDF:

N∑

i=1

(
Ci

Ti

)
≤ 1 (2)

Clearly this is a much simpler test. As long as the utilization of the process set is less
than the total capacity of the processor then all deadlines will be met (for the simple
process model). In this sense EDF is superior to FPS; it can always schedule any process
set that FPS can, but not all process sets that are passed by the EDF test can be scheduled
using fixed priorities. Given this advantage it is reasonable to ask why EDF is not the
preferred process-based scheduling method? The reason is that FPS has a number of
advantages over EDF:

– FPS is easier to implement, as the scheduling attribute (priority) is static; EDF
is dynamic and hence requires a more complex run-time system which will have
higher overhead.

– It is easier to incorporate processes without deadlines into FPS (by merely assigning
them a priority); giving a process an arbitrary deadline is more artificial.

– The deadline attribute is not the only parameter of importance; again it is easier
to incorporate other factors into the notion of priority than it is into the notion of
deadline.

– During overload situations (which may be a fault condition) the behaviour of FPS
is more predictable (the lower priority processes are those that will miss their dead-
lines first); EDF is unpredictable under overload and can experience a domino effect
in which a large number of processes miss deadlines.
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Process

a

b

c

0 10 20 30 40 50 60 70 80

Time

Fig. 11. Time-line for process set C

– The utilization-based test, for the simple model, is misleading as it is necessary
and sufficient for EDF but only sufficient for FPS. Hence higher utilizations can, in
general, be achieved for FPS.

Notwithstanding this final point, EDF does have an advantage over FPS because of
its higher utilization, and hence it continues to be studied and used in some experimental
systems.

4.5 Response Time Analysis for FPS

The utilization-based tests for FPS have two significant drawbacks: they are not exact,
and they are not really applicable to a more general process model. This section pro-
vides a different form of test. The test is in two stages. First, an analytical approach
is used to predict the worst-case response time of each process. These values are then
compared, trivially, with the process deadlines. This requires each process to be ana-
lyzed individually.

For the highest-priority process, its worst-case response time will equal its own com-
putation time (that is, R = C). Other processes will suffer interference from higher-
priority processes; this is the time spent executing higher-priority processes when a
low-priority process is runnable. So for a general process i:

Ri = Ci + Ii (3)

where Ii is the maximum interference that process i can experience in any time in-
terval [t, t + Ri).3 The maximum interference obviously occurs when all higher-priority
processes are released at the same time as process i (that is, at a critical instant). Without
loss of generality, it can be assumed that all processes are released at time 0. Consider
one process (j) of higher priority than i. Within the interval [0, Ri), it will be released

3 Note that as a discrete time model is used in this analysis, all time intervals must be closed
at the beginning (denoted by ‘[’) and open at the end (denoted by a ‘)’). Thus a process can
complete executing on the same tick as a higher-priority process is released.
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a number of times (at least one). A simple expression for this number of releases is
obtained using a ceiling function:

Number Of Releases =
⌈

Ri

Tj

⌉

The ceiling function (
 �) gives the smallest integer greater than the fractional number
on which it acts. So the ceiling of 1/3 is 1, of 6/5 is 2, and of 6/3 is 2. The definitions of
the ceilings of negative values need not be considered.

So, if Ri is 15 and Tj is 6 then there are 3 releases of process j (at times 0, 6 and 12).
Each release of process j will impose an interference of Cj. Hence

Maximum Interference =
⌈

Ri

Tj

⌉
Cj

If Cj = 2 then in the interval [0, 15) there are 6 units of interference. Each process of
higher priority is interfering with process i, and hence:

Ii =
∑

j∈hp(i)

⌈
Ri

Tj

⌉
Cj

where hp(i) is the set of higher-priority processes (than i). Substituting this value back
into Equation (3) gives [35]:

Ri = Ci +
∑

j∈hp(i)

⌈
Ri

Tj

⌉
Cj (4)

Although the formulation of the interference equation is exact, the actual amounts of
interference is unknown as Ri is unknown (it is the value being calculated). Equation (4)
has Ri on both sides, but is difficult to solve due to the ceiling functions. It is actually
an example of a fixed-point equation. In general, there will be many values of Ri that
form solutions to Equation (4). The smallest such value of Ri represents the worst-case
response time for the process. The simplest way of solving Equation (4) is to form a
recurrence relationship [4]:

wn+1
i = Ci +

∑

j∈hp(i)

⌈
wn

i

Tj

⌉
Cj (5)

The set of values {w0
i , w1

i , w2
i , ..., wn

i , ...} is, clearly, monotonically non-decreasing.
When wn

i = wn+1
i , the solution to the equation has been found. If w0

i < Ri then wn
i

is the smallest solution and hence is the value required. If the equation does not have
a solution then the w values will continue to rise (this will occur for a low-priority
process if the full set has a utilization greater than 100%). Once they get bigger than the
process’s period, T, it can be assumed that the process will not meet its deadline. The
above analysis gives rise to the following algorithm for calculation response times:
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for i in 1..N loop -- for each process in turn
n := 0
wn

i := Ci

loop
calculate new wn+1

i from Equation (5)
if wn+1

i = wn
i then

Ri := wn
i

exit {value found}
end if
if wn+1

i > Ti then
exit {value not found}

end if
n := n + 1

end loop
end loop

By implication, if a response time is found it will be less than Ti, and hence less than
Di, its deadline (remember with the simple process model Di = Ti).

In the above discussion, wi has been used merely as a mathematical entity for solving
a fixed-point equation. It is, however, possible to get an intuition for wi from the problem
domain. Consider the point of release of process i. From that point, until the process
completes, the processor will be executing processes with priority Pi or higher. The
processor is said to be executing a Pi-busy period. Consider wi to be a time window
that is moving down the busy period. At time 0 (the notional release time of process i),
all higher priority processes are assumed to have also been released, and hence

w1
i = Ci +

∑

j∈hp(i)

Cj

This will be the end of the busy period unless some higher-priority process is released a
second time. If it is, then the window will need to be pushed out further. This continues
with the window expanding and, as a result, more computation time falling into the
window. If this continues indefinitely then the busy period is unbounded (that is, there
is no solution). However, if at any point, an expanding window does not suffer an extra
‘hit’ from a higher-priority process then the busy period has been completed, and the
size of the busy period is the response time of the process.

To illustrate how the response time analysis is used, consider process set D given in
Table 7.

The highest-priority process, a, will have a response time equal to its computation
time (for example, Ra = 3). The next process will need to have its response time calcu-
lated. Let w0

b equal the computation time of process a, which is 3. Equation (5) is used
to derive the next value of w:

w1
b = 3 +

⌈
3
7

⌉
3

that is, w1
b = 6. This value now balances the Equation (w2

b = w1
b = 6) and the response

time of process b has been found (that is, Rb = 6).
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The final process will give rise to the following calculations:

w0
c = 5

w1
c = 5 +

⌈
5
7

⌉
3 +

⌈
5
12

⌉
3 = 11

w2
c = 5 +

⌈
11
7

⌉
3 +

⌈
11
12

⌉
3 = 14

w3
c = 5 +

⌈
14
7

⌉
3 +

⌈
14
12

⌉
3 = 17

w4
c = 5 +

⌈
17
7

⌉
3 +

⌈
17
12

⌉
3 = 20

w5
c = 5 +

⌈
20
7

⌉
3 +

⌈
20
12

⌉
3 = 20

Hence Rc has a worst-case response time of 20, which means that it will just meet its
deadline.

Consider again the process set C. This set failed the utilization-based test but was
observed to meet all its deadlines up to time 80. Table 8 shows the response times
calculated by the above method for this collection. Note that all processes are now
predicted to complete before their deadlines.

The response time calculations have the advantage that they are sufficient and nec-
essary – if the process set passes the test they will meet all their deadlines; if they fail
the test, then, at run-time, a process will miss its deadline (unless the computation time
estimations, C, themselves turn out to be pessimistic). As these tests are superior to the
utilization-based ones, this paper will concentrate on extending the applicability of the
response time method.

4.6 Response Time Analysis for EDF

One of the disadvantages of the EDF scheme is that the worst-case response time for
each process does not occur when all processes are released at a critical instant. In that
situation only processes with a shorter relative deadline will interfere. But later there may
exist a position in which all (or at least more) processes have a shorter absolute deadline.
For example, consider a three process system as depicted in Table 9. The behaviour of
process b illustrates the problem. At time 0, a critical instant, b only gets interference from
process a (once) and has a response time of 4. But at its next release (at time 12) process

Table 7. Process set D

Process Period, T Computation time, C Priority, P
a 7 3 3
b 12 3 2
c 20 5 1
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Table 8. Response time for process set C

Process Period, T Computation time, C Priority, P Response time, R
a 80 40 1 80
b 40 10 2 15
c 20 5 3 5

Table 9. A process set for EDF

Process T(=D) C
a 4 1
b 12 3
c 16 8

c is still active and has a shorted deadline (16 versus 24) and hence c takes precedence;
the response time for this second release of b is 8, twice the value obtained at the critical
instant. Later releases may give an even larger value, although it is bounded at 12 as the
system is schedulable by EDF (utilization is 1). Hence to find the worst case is much
more complex. It is necessary to consider all process releases to see which one suffers
the maximum interference from other processes with shorter deadlines.

In the simple model with all periodic processes, the full process set will repeat its
execution every hyper-period; that is, the least common multiple (LCM) of the process
periods. For example, in a small system with only four processes but periods of 24, 50,
73 and 101 time units, the LCM is 4 423 800. To find the worst-case response time for
EDF may require each release within 4 423 800 to be considered – remember with FPS
only the first release needs be analyzed (that is, the maximum time to consider is 101
time units).

Although more releases must be considered it is possible to derive a formula for
computing each response time in a manner similar to that given above for FPS [49].

4.7 Sporadic and Aperiodic Processes

To expand the simple model of subsection 4.1 to include sporadic (and aperiodic)
process requirements, the value T is interpreted as the minimum (or average) inter-
arrival interval [4]. A sporadic process with a T value of 20 ms is guaranteed not to
arrive more than once in any 20 ms interval. In reality, it may arrive much less fre-
quently than once every 20 ms, but the response time test will ensure that the maximum
rate can be sustained (if the test is passed!).

The other requirement that the inclusion of sporadic processes demands concerns the
definition of the deadline. The simple model assumes that D = T. For sporadic processes,
this is unreasonable. Often a sporadic is used to encapsulate an error-handling routine or
to respond to a warning signal. The fault model of the system may state that the error
routine will be invoked very infrequently – but when it is, it is urgent and hence it has a
short deadline. Our model must therefore distinguish between D and T, and allow D < T.
Indeed, for many periodic processes, it will be useful to allow the application to define
deadline values less than period.
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An inspection of the response time algorithm for fixed priority scheduling, described
in Section 4.5 reveals that:

– it works perfectly for values of D less than T as long as the stopping criterion
becomes wn+1

i > Di,
– it works perfectly well with any priority ordering – hp(i) always gives the set of

higher-priority processes.

Although some priority orderings are better than others, the test will provide the worst-
case response times for the given priority ordering.

In the Section 4.11, an optimal priority ordering for D < T is defined (and proved).
A later section will consider an extended algorithm and optimal priority ordering for
the general case of D < T, D = T or D > T.

4.8 Hard and Soft Processes

For sporadic processes, average and maximum arrival rates may be defined. Unfortu-
nately, in many situations the worst-case figure is considerably higher than the average.
Interrupts often arrive in bursts and an abnormal sensor reading may lead to significant
additional computation. It follows that measuring schedulability with worst-case fig-
ures may lead to very low processor utilizations being observed in the actual running
system. As a guideline for the minimum requirement, the following two rules should
always be complied with:

– Rule 1 – all processes should be schedulable using average execution times and
average arrival rates.

– Rule 2 – all hard real-time processes should be schedulable using worst-case exe-
cution times and worst-case arrival rates of all processes (including soft).

A consequent of Rule 1 is that there may be situations in which it is not possible to
meet all current deadlines. This condition is known as a transient overload; Rule 2,
however, ensures that no hard real-time process will miss its deadline. If Rule 2 gives
rise to unacceptably low utilizations for ‘normal execution’, direct action should be
taken to try and reduce the worst-case execution times (or arrival rates).

4.9 Aperiodic Processes and Fixed Priority Servers

One simple way of scheduling aperiodic processes, within a priority-based scheme, is
to run such processes at a priority below the priorities assigned to hard processes. In
effect, the aperiodic processes run as background activities, and therefore cannot steal,
in a preemptive system, resources from the hard processes. Although a safe scheme,
this does not provide adequate support to soft processes which will often miss their
deadlines if they only run as background activities. To improve the situation for soft
processes, a server can be employed. Servers protect the processing resources needed
by hard processes, but otherwise allow soft processes to run as soon as possible.

Since they were first introduced in 1987, a number of server methods have been
defined. Here only two will be considered: the Deferrable Server (DS) and the Sporadic
Server (SS) [37].
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With the DS, an analysis is undertaken (using, for example, the response time
approach) that enables a new process to be introduced at the highest priority.4 This
process, the server, thus has a period, Ts and a capacity Cs. These values are chosen so that
all the hard processes in the system remain schedulable even if the server executes
periodically with period Ts and execution time Cs. At run-time, whenever an aperiodic
process arrives, and there is capacity available, it starts executing immediately and
continues until either it finishes or the capacity is exhausted. In the latter case, the
aperiodic process is suspended (or transferred to a background priority). With the DS
model, the capacity is replenished every Ts time units.

The operation of the SS differs from DS in its replenishment policy. With SS, if a
process arrives at time t and uses c capacity then the server has this c capacity replen-
ished Ts time units after t. In general, SS can furnish higher capacity than DS but has
increased implementational overheads.

As all servers limit the capacity that is available to aperiodic soft processes, they can
also be used to ensure that sporadic processes do not execute more often than expected.
If a sporadic process with interarrival interval of Ti and worst-case execution time of Ci

is implemented not directly as a process, but via a server with Ts = Ti and Cs = Ci,
then its impact (interference) on lower-priority processes is bounded even if the sporadic
process arrives too quickly (which would be an error condition).

All servers (DS, SS and others) can be described as bandwidth preserving in that
they attempt to

– make CPU resources available immediately to aperiodic processes (if there is a
capacity);

– retain the capacity for as long as possible if there are currently no aperiodic processes
(by allowing the hard processes to execute).

Another bandwidth preserving scheme, which often performs better than the server
techniques is dual-priority scheduling [23]. Here, the range of priorities is split into
three bands: high, medium and low. All aperiodic processes run in the middle band.
Hard processes, when they are released, run in the low band, but they are promoted to
the top band in time to meet their deadlines. Hence in the first stage of execution they
will give way to aperiodic activities (but will execute if there is no such activity). In
the second phase they will move to a higher priority and then have precedence over
the aperiodic work. In the high band, priorities are assigned according to the deadline
monotonic approach (see below). Promotion to this band occurs at time D − R. To
implement the dual-priority scheme requires a dynamic priority provision.

4.10 Aperiodic Processes and EDF Servers

Following the development of server technology for fixed priority systems, most of the
common approaches have been reinterpreted within the context of dynamic EDF sys-
tems. For example there is a Dynamic Sporadic Server [15]. Whereas the static system
needs a priority to be assigned (which is done pre-run-time), the dynamic version needs

4 Servers at other priorities are possible, but the description is more straightforward if the server is
given a higher priority than all the hard processes.
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Table 10. Example process set for DMPO

Process Period, T Deadline, D Computation Priority, P Response
time, C time, R

a 20 5 3 4 3
b 15 7 3 3 6
c 10 10 4 2 10
d 20 20 3 1 20

to compute a deadline each time it needs to execute. In essence, the run-time algorithm
assigns the server the shortest current deadline if (and only if) there is an outstand-
ing aperiodic process to serve and there is capacity outstanding. Once the capacity is
exhausted, the server is suspended until it is replenished.

4.11 Process Systems with D < T

In the above discussion on sporadic processes is was argued that, in general, it must
be possible for a process to define a deadline that is less than its inter-arrival interval
(or period). It was also noted earlier that for D = T the rate monotonic priority or-
dering was optimal for a fixed priority scheme. Liu and Layland[38] showed that for
D < T, a similar formulation could be defined – the deadline monotonic priority or-
dering (DMPO). Here, the fixed priority of a process is inversely proportional to its
deadline: (Di < Dj ⇒ Pi > Pj). Table 10 gives the appropriate priority assignments
for a simple process set. It also includes the worst-case response time – as calculated
by the algorithm in Section 4.5. Note that a rate monotonic priority ordering would not
schedule these processes.

In the following subsection, the optimality of DMPO is proven. Given this result and
the direct applicability of response time analysis to this process model, it is clear that
fixed priority scheduling can adequately deal with this more general set of scheduling
requirements. The same is not true for EDF scheduling. Once processes can have D <
T then the simple utilization test (total utilization less than one) cannot be applied.
Moreover, the response time analysis, discussed in Section 4.6, is considerable more
complex for EDF than it is for FPS.

Having raised this difficulty with EDF is must be remembered that EDF is the more
effective scheduling scheme. Hence any process set that passes an FPS schedulability
test will also always meet its timing requirements if executed under EDF. The necessary
and sufficient tests for FPS can thus be seen as sufficient tests for EDF.

4.12 Proof That DMPO Is Optimal

Deadline monotonic priority ordering (DMPO) is optimal if any process set, Q, that is
schedulable by priority scheme, W, is also schedulable by DMPO. The proof of opti-
mality of DMPO will involve transforming the priorities of Q (as assigned by W) until
the ordering is DMPO. Each step of the transformation will preserve schedulability.
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Let i and j be two processes (with adjacent priorities) in Q such that under W: Pi > Pj

and Di > Dj. Define scheme W′ to be identical to W except that processes i and j are
swapped. Consider the schedulability of Q under W′:

– All processes with priorities greater than Pi will be unaffected by this change to
lower-priority processes.

– All processes with priorities lower than Pj will be unaffected. They will all experi-
ence the same interference from i and j.

– Process j, which was schedulable under W, now has a higher priority, suffers less
interference, and hence must be schedulable under W′.

All that is left is the need to show that process i, which has had its priority lowered, is
still schedulable.

Under W, Rj ≤ Dj, Dj < Di and Di ≤ Ti and hence process i only interferes once
during the execution of j.

Once the processes have been switched, the new response time of i becomes equal
to the old response time of j. This is true because under both priority orderings Cj + Ci

amount of computation time has been completed with the same level of interference
from higher-priority processes. Process j was released only once during Rj, and hence
interferes only once during the execution of i under W′. It follows that:

R′
i = Rj ≤ Dj < Di

It can be concluded that process i is schedulable after the switch.
Priority scheme W ′ can now be transformed (to W ′′) by choosing two more processes

‘that are in the wrong order for DMPO’ and switching them. Each such switch preserves
schedulability. Eventually there will be no more processes to switch; the ordering will
be exactly that required by DMPO and the process set will still be schedulable. Hence,
DMPO is optimal.

Note that for the special case of D = T, the above proof can be used to show that, in
this circumstance, rate monotonic ordering is also optimal.

4.13 Process Interactions and Blocking

One of the simplistic assumptions embodied in the system model, described in sub-
section 4.1, is the need for processes to be independent. This is clearly unreasonable,
as process interaction will be needed in almost all meaningful applications. All con-
current language features for communication lead to the possibility of a process being
suspended until some necessary future event has occurred (for example, waiting to gain
a lock on a semaphore, or entry to a monitor, or until some other process is in a position
to accept a rendezvous request). In general, synchronous communication leads to more
pessimistic analysis as it is harder to define the real worst case when there are many
dependencies between process executions. The following analysis is therefore more ac-
curate when related to asynchronous communication where processes exchange data
via shared resources. The majority of the material in the next two sections is concerned
with fixed-priority scheduling. At the end of this discussion, the applicability of the
results to EDF scheduling will be considered.
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Table 11. Execution sequences

Process Priority Execution sequence Release time
a 1 EQQQQE 0
b 2 EE 2
c 3 EVVE 2
d 4 EEQVE 4

If a process is suspended waiting for a lower-priority process to complete some re-
quired computation then the priority model is, in some sense, being undermined. In an
ideal world, such priority inversion [36] (that is, a high-priority process having to wait
for a lower-priority process) should not exist. However, it cannot, in general, be totally
eliminated. Nevertheless, its adverse effects can be minimized. If a process is waiting
for a lower-priority process, it is said to be blocked. In order to test for schedulability,
blocking must be bounded and measurable; it should also be small.

To illustrate an extreme example of priority inversion, consider the executions of four
periodic processes: a, b, c and d. Assume they have been assigned priorities according
to the deadline monotonic scheme, so that the priority of process d is the highest and
that of process a the lowest. Further, assume that processes d and a (and processes d
and c) share a critical section (resource), denoted by the symbol Q (and V), protected
by mutual exclusion. Table 11 gives the details of the four processes and their execution
sequences; in this table ‘E’ represents a single tick of execution time and ‘Q’ (or ‘V’)
represent an execution tick with access to the Q (or V) critical section. Thus process c
executes for four ticks; the middle two while it has access to critical section V.

Figure 12 illustrates the execution sequence for the start times given in the table.
Process a is released first, executes and locks the critical section, Q. It is then preempted
by the release of process c which executes for one tick, locks V and is then preempted
by the release of process d. The higher-priority process then executes until it also wishes
to lock the critical section, Q; it must then be suspended (as the section is already locked
by a). At this point, c will regain the processor and continue. Once it has terminated, b
will commence and run for its entitlement. Only when b has completed will a be able
to execute again; it will then complete its use of the Q and allow d to continue and
complete. With this behaviour, d finishes at time 16, and therefore has a response time
of 12; c has a value of 6, b a value of 8, and a a value of 17.

An inspection of Figure 12 shows that process d suffers considerable priority inver-
sion. Not only is it blocked by process a but also by processes b and c. Some blocking
is inevitable; if the integrity of the critical section (and hence the shared data) is to be
maintained then a must run in preference to d (while it has the lock). But the blocking
of d by processes c and b is unproductive and will severely affect the schedulability of
the system (as the blocking on process d is excessive).

Thistypeofpriority inversionistheresultofapurelyfixed-priorityscheme.Onemethod
of limiting this effect is to use priority inheritance [20]. With priority inheritance, a
process’s priority is no longer static; if a process p is suspended waiting for process q to
undertake some computation then the priority of q becomes equal to the priority of p (if it
were lower to start with). In the example just given, process a will be given the priority of
process d and will, therefore, run in preference to process c and process b. This is
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Fig. 12. Example of priority inversion

illustrated in Figure 13. Note as a consequence of this algorithm, process b will now suffer
blocking even though it does not use a shared object. Also note that process d now has a
second block, but its response time has been reduced to 9.

With this simple inheritance rule, the priority of a process is the maximum of its
own default priority and the priorities of all the other processes that are at that time
dependent upon it.

In general, inheritance of priority would not be restricted to a single step. If process d
is waiting for process c, but c cannot deal with d because it is waiting for process b then
b as well as c would be given d’s priority. The implication for the run-time dispatcher
is that a process’s priorities will often be changing and that it may be better to choose
the appropriate process to run (or make runnable) at the time when the action is needed
rather than try and manage a queue that is ordered by priority.

Inthedesignofareal-timelanguage,priority inheritancewouldseemtobeofparamount
importance. To have the most effective model, however, implies that the concurrency
model should have a particular form. With standard semaphores and condition variables,
there isnodirect linkbetweentheactofbecomingsuspendedandthe identityof theprocess
that will reverse this action. Inheritance is therefore not easily implemented.

Analysis of these protocols show that with a priority inheritance protocol, there is a
bound on the number of times a process can be blocked by lower priority processes. If
a process has m critical sections that can lead to it being blocked then the maximum
number of times it can be blocked is m. That is, in the worst case, each critical section
will be locked by a lower-priority process (this is what happened in Figure 13). If there
are only n (n < m) lower-priority processes then this maximum can be further reduced
(to n).
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Fig. 13. Example of priority inheritance

If Bi is the maximum blocking time that process i can suffer then for this simple
priority inheritance model, a formula for calculating B can easily be found. Let K be
the number of critical sections (resources). Equation (6) thus provides an upper bound
on B.

Bi =
K∑

k=1

usage(k, i)C(k) (6)

where usage is a 0/1 function: usage(k, i) = 1 if resource k is used by at least one
process with a priority less than Pi, and at least one process with a priority greater or
equal to Pi. Otherwise it gives the result 0. C(k) is the worst-case execution time of the
k critical section.

This algorithm is not optimal for this inheritance protocol, but serves to illustrate the
factors that need to be taken into account when calculating B. In Section 4.15, better
inheritance protocols will be described and an improved formulae for B will be given.

4.14 Response Time Calculations and Blocking

Given that a value for B has been obtained, the response time algorithm can be modified
to take the blocking factor into account:5

R = C + B + I

that is,

Ri = Ci + Bi +
∑

j∈hp(i)

⌈
Ri

Tj

⌉
Cj (7)

which can again be solved by constructing a recurrence relationship:

5 Blocking can also be incorporated into the utilization-based tests, but now each process must
be considered individually.
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wn+1
i = Ci + Bi +

∑

j∈hp(i)

⌈
wn

i

Tj

⌉
Cj (8)

Note that this formulation may now be pessimistic (that is, not necessarily sufficient
and necessary). Whether a process actually suffers its maximum blocking will depend
upon process phasings. For example, if all processes are periodic and all have the same
period then no preemption will take place and hence no priority inversion will occur.
However, in general, Equation (7) represents an effective scheduling test for real-time
systems containing cooperating processes.

4.15 Priority Ceiling Protocols

While the standard inheritance protocol gives an upper bound on the number of blocks
a high-priority process can encounter, this bound can still lead to an unacceptably pes-
simistic worst-case calculation. This is compounded by the possibility of chains of
blocks developing (transitive blocking), that is, process c being blocked by process
b which is blocked by process a and so on. As shared data is a system resource, from
a resource management point of view not only should blocking be minimized, but fail-
ure conditions such as deadlock should be eliminated. All of these issues are addressed
by the ceiling priority protocols [48]; two of which will be considered in this paper:
the original ceiling priority protocol and the immediate ceiling priority protocol.
The original protocol (OCPP) will be described first, followed by the somewhat more
straightforward immediate variant (ICPP). When either of these protocols are used on
a single-processor system:

– A high-priority process can be blocked at most once during its execution by lower-
priority processes.

– Deadlocks are prevented.
– Transitive blocking is prevented.
– Mutual exclusive access to resources is ensured (by the protocol itself).

The ceiling protocols can best be described in terms of resources protected by critical
sections. In essence, the protocol ensures that if a resource is locked, by process a say,
and could lead to the blocking of a higher-priority process (b), then no other resource
that could block b is allowed to be locked by any process other that a. A process can
therefore be delayed by not only attempting to lock a previously locked resource but
also when the lock could lead to multiple blocking on higher-priority processes.

The original protocol takes the following form:

1. Each process has a static default priority assigned (perhaps by thedeadline monotonic
scheme).

2. Each resource has a static ceiling value defined, this is the maximum priority of the
processes that use it.

3. A process has a dynamic priority that is the maximum of its own static priority and
any it inherits due to it blocking higher-priority processes.
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Fig. 14. Example of priority inheritance – OCPP

4. A process can only lock a resource if its dynamic priority is higher than the ceiling
of any currently locked resource (excluding any that it has already locked itself).

The locking of a first system resource is allowed. The effect of the protocol is to ensure
that a second resource can only be locked if there does not exist a higher-priority process
that uses both resources. Consequently, the maximum amount of time a process can be
blocked is equal to the execution time of the longest critical section in any of the lower-
priority processes that are accessed by higher-priority processes; that is, Equation (6)
becomes:

Bi = maxK
k=1 usage(k, i)C(k) (9)

The benefit of the ceiling protocol is that a high-priority process can only be blocked
once (per activation) by any lower-priority process. The cost of this result is that more
processes will experience this block.

Not all the features of the algorithm can be illustrated by a single example, but the
execution sequence shown in Figure 14 does give a good indication of how the algo-
rithm works and provides a comparison with the earlier approaches (that is, this figure
illustrates the same process sequence used in Figures 13 and 12).

In Figure 14, process a again locks the first critical section, as no other resources have
been locked. It is again preempted by process c, but now the attempt by c to lock the second
section (V) is not successful as its priority (3) is not higher than the current ceiling (which
is 4, as Q is locked and is used by process d). At time 3, a is blocking c, and hence runs with
its priority at the level 3, thereby blocking b. The higher-priority process, d, preempts a at
time 4, but is subsequently blocked when it attempts to access Q. Hence a will continue



Delivering Real-Time Behaviour 39

(with priority 4) until it releases its lock on Q and has its priority drop back to 1. Now, dcan
continue until it completes (with a response time of 7).

The priority ceiling protocols ensure that a process is only blocked once during each
invocation. Figure 14, however, appears to show process b (and process c) suffering two
blocks. What is actually happening is that a single block is being broken in two by the
preemption of process d. Equation (9) determines that all processes (apart from process
a) will suffer a maximum single block of 4. Figure 14 shows that for this particular
execution sequence process c and process d actually suffer a block of 3 and process d a
block of only 2.

Immediate Ceiling Priority Protocol. The immediate ceiling priority algorithm (ICPP)
takesamorestraightforward approach and raises thepriority ofaprocessassoonas it locks
a resource (rather than only when it is actually blocking a higher-priority process). The
protocol is thus defined as follows:

– Each process has a static default priority assigned (perhaps by thedeadline monotonic
scheme).

– Each resource has a static ceiling value defined, this is the maximum priority of the
processes that use it.

– A process has a dynamic priority that is the maximum of its own static priority and
the ceiling values of any resources it has locked.

As a consequence of this final rule, a process will only suffer a block at the very be-
ginning of its execution. Once the process starts actually executing, all the resources it
needs must be free; if they were not, then some process would have an equal or higher
priority and the process’s execution would be postponed.

The same process set used in earlier illustrations can now be executed under ICPP
(see Figure 15).

Process a having locked Q at time 1, runs for the next 4 ticks with priority 4. Hence
neither process b, process c nor process d can begin. Once a unlocks Q (and has its
priority reduced), the other processes execute in priority order. Note that all blocking
is before actual execution and that d’s response time is now only 6. This is somewhat
misleading, however, as the worst-case blocking time for the two protocols is the same
(see Equation (9)).

Although the worst-case behaviour of the two ceiling schemes is identical (from a
scheduling view point), there are some points of difference:

– ICCP is easier to implement than the original (OCPP) as blocking relationships
need not be monitored.

– ICPP leads to less context switches as blocking is prior to first execution.
– ICPP requires more priority movements as this happens with all resource usages;

OCPP changes priority only if an actual block has occurred.

Finally, note that Protocol ICPP is called Priority Protect Protocol in POSIX and Priority
Ceiling Emulation in Real-Time Java.

Ceiling Protocols, Mutual Exclusion and Deadlock. Although the above algorithms
for the two ceiling protocols were defined in terms of locks on resources, it must be
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Fig. 15. Example of priority inheritance – ICPP

emphasized that the protocols themselves rather than some other synchronization prim-
itive provided the mutual exclusion access to the resource (at least on a single processor
system). Consider ICPP; if a process has access to some resource then it will be run-
ning with the ceiling value. No other process that uses that resource can have a higher
priority, and hence the executing process will either execute unimpeded while using the
resource, or, if it is preempted, the new process will not use this particular resource.
Either way, mutual exclusion is ensured.

The other major property of the ceiling protocols (again for single-processor sys-
tems) is that they are deadlock-free. The ceiling protocols are a form of deadlock pre-
vention. If a process holds one resource while claiming another, then the ceiling of the
second resource cannot be lower than the ceiling of the first. Indeed, if two resources
are used in different orders (by different processes) then their ceilings must be identical.
As one process is not preempted by another with merely the same priority, it follows
that once a process has gained access to a resource then all other resources will be free
when needed. There is no possibility of circular waits and deadlock is prevented.

Ceiling Protocols and EDF. The approach outlined above for fixed priority systems
can also be applied to EDF scheduling. Baker has derived these protocols [7,6], but they
are beyond the scope of this paper.

4.16 Release Jitter

In the simple model, all processes are assumed to be periodic and to be released with
perfect periodicity; that is, if process l has period Tl then it is released with exactly that
frequency. Sporadic processes are incorporated into the model by assuming that their
minimum inter-arrival interval is T. This is not, however, always a realistic assump-
tion. Consider a sporadic process s being released by a periodic process l (on another
processor). The period of the first process is Tl and the sporadic process will have the
same rate, but it is incorrect to assume that the maximum load (interference) s exerts on
low-priority processes can be represented in Equations (4) or (5) as a periodic process
with period Ts = Tl.

To understand why this is insufficient, consider two consecutiveexecutionsofprocess l.
Assume that theevent that releasesprocesssoccursat theveryendof theperiodicprocess’s
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Fig. 16. Releases of sporadic processes

execution. On the first execution of process l, assume that the process does not complete
until its latest possible time, that is, Rl. However, on the next invocation assume there is no
interference on process l so it completes within Cl. As this value could be arbitrarily small,
let it equal zero. The two executions of the sporadic process are not separated by Tl but by
Tl − Rl. Figure 16 illustrates this behaviour for Tl equal to 20, Rl equal to 15 and minimum
Cl equal to 1 (that is, two releasesof thesporadicprocesswithin 6 timeunits).Note that this
phenomenon is of interest only if process l is remote. If this was not the case then the
variations in the release of process s would be accounted for by the standard equations,
where a critical instant can be assumed between the releaser and the released.

To capture correctly the interference sporadic processes have upon other processes,
the recurrence relationship must be modified. The maximum variation in a process’s
release is termed its jitter (and is represented by J). For example, in the above, process
s would have a jitter value of 15. In terms of its maximum impact on lower-priority
processes, this sporadic process will be released at time 0, 5, 25, 45 and so on. That
is, at times 0, T − J, 2T − J, 3T − J, and so on. Examination of the derivation of the
schedulability equation implies that process i will suffer one interference from process
s if Ri is between 0 and T − J, that is Ri ∈ [0, T − J), two if Ri ∈ [T − J, 2T − J), three
if Ri ∈ [2T − J, 3T − J) and so on. A slight rearrangement of these conditions shows
a single hit if Ri + J ∈ [0, T), a double hit if Ri + J ∈ [T, 2T) and so on. This can be
represented in the same form as the previous response time equations as follows [4]:

Ri = Bi + Ci +
∑

j∈hp(i)

⌈
Ri + Jj

Tj

⌉
Cj (10)

In general, periodic processes do not suffer release jitter. An implementation may,
however, restrict the granularity of the system timer (which releases periodic processes).
In this situation, a periodic process may also suffer release jitter. For example, a T value
of 10 but a system granularity of 8 will imply a jitter value of 6 – at time 16 the periodic
process will be released for its time ‘10’ invocation. If response time (now denoted as
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Rperiodic
i ) is to be measured relative to the real release time then the jitter value must be

added to that previously calculated:

Rperiodic
i = Ri + Ji (11)

If this new value is greater than Ti then the following analysis must be used.

4.17 Arbitrary Deadlines

To cater for situations where Di (and hence potentially Ri) can be greater than Ti, the
analysis must again be adapted. When deadline is less than (or equal) to period, it is
necessary to consider only a single release of each process. The critical instant, when
all higher-priority processes are released at the same time, represents the maximum
interference and hence the response time following a release at the critical instant must
be the worst case. However, when deadline is greater than period, a number of releases
must be considered. The following assumes that the release of a process will be delayed
until any previous releases of the same process have completed.

If a process executes into the next period then both releases must be analyzed to see
which gives rise to the longest response time. Moreover, if the second release is not
completed before a third occurs than this new release must also be considered, and so
on.

For each potentially overlapping release, a separate window w(q) is defined, where
q is just an integer identifying a particular window (that is, q = 0, 1, 2, ...). Equation (5)
can be extended to have the following form (ignoring jitter) [50] :

wn+1
i (q) = Bi + (q + 1)Ci +

∑

j∈hp(i)

⌈
wn

i (q)
Tj

⌉
Cj (12)

For example, with q equal to 2, three releases of the process will occur in the window.
For each value of q, a stable value of w(q) can be found by iteration – as in Equation
(5). The response time is then given as

Ri(q) = wn
i (q) − qTi (13)

for example, with q = 2 the process started 2Ti into the window and hence the response
time is the size of the window minus 2Ti.

The number of releases that need to be considered is bounded by the lowest value of
q for which the following relation is true:

Ri(q) ≤ Ti (14)

At this point, the process completes before the next release and hence subsequent win-
dows do not overlap. The worst-case response time is then the maximum value found
for each q:

Ri = maxq=0,1,2,... Ri(q) (15)

Note that for D ≤ T, the relation in Equation (14) is true for q = 0 (if the process
can be guaranteed), in which case Equations (12) and (13) simplify back to the original
equation. If any R > D, then the process is not schedulable.
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When this arbitrary deadline formulation is combined with the effect of release jitter,
two alterations to the above analysis must be made. First, as before, the interference
factor must be increased if any higher priority processes suffers release jitter:

wn+1
i (q) = Bi + (q + 1)Ci +

∑

j∈hp(i)

⌈
wn

i (q) + Jj

Tj

⌉
Cj (16)

The other change involves the process itself. If it can suffer release jitter then two
consecutive windows could overlap if response time plus jitter is greater than period.
To accommodate this, Equation (13) must be altered:

Ri(q) = wn
i (q) − qTi + Ji (17)

4.18 Fault Tolerance

Fault tolerance via either forward or backward error recovery always results in extra
computation. This could be an exception handler or a recovery block. In a real-time fault
tolerant system, deadlines should still be met even when a certain level of faults occur.
This level of fault tolerance is know as the fault model. If Cf

i is the extra computation
time that results from an error in process i, then the response time equation can easily
be changed.

Ri = Bi + Ci +
∑

j∈hp(i)

⌈
Ri

Tj

⌉
Cj + maxk∈hep(i) Cf

k (18)

where hep(i) is the set of processes with a priority equal or higher than i.
Here, the fault model defines a maximum of one fault and there is an assumption that

a process will execute its recovery action at the same priority as its ordinary computa-
tion. Equation (18) is easily changed to increase the number of allowed faults (F):

Ri = Bi + Ci +
∑

j∈hp(i)

⌈
Ri

Tj

⌉
Cj + maxk∈hep(i) FCf

k (19)

Indeed, a system can be analyzed for increasing values of F to see what number of
faults (arriving in a burst) can be tolerated. Alternatively, the fault model may indicate
a minimum arrival interval for faults, in this case the equation becomes:

Ri = Bi + Ci +
∑

j∈hp(i)

⌈
Ri

Tj

⌉
Cj + maxk∈hep(i)

(⌈
Ri

Tf

⌉
Cf

k

)
(20)

where Tf is the minimum inter-arrival time between faults.
In Equations (19) and (20), the assumption is made that in the worst case, the fault

will always occur in the process that has the longest recovery time.



44 A. Burns and A. Wellings

4.19 Priority Assignment

The formulation given for arbitrary deadlines has the property that no simple algorithms
(such as rate or deadline monotonic) gives the optimal priority ordering. In this section,
a theorem and algorithm for assigning priorities in arbitrary situations is given. The
theorem considers the behaviour of the lowest priority process [5].

Theorem. If process p is assigned the lowest priority and is feasible, then, if a feasible
priority ordering exists for the complete process set, an ordering exists with process p
assigned the lowest priority.

The proof of this theorem comes from considering the schedulability equations – for
example, Equation (12). If a process has the lowest priority, it suffers interference from
all higher-priority processes. This interference is not dependent upon the actual ordering
of these higher priorities. Hence if any process is schedulable at the bottom value it can
be assigned that place, and all that is required is to assign the other N − 1 priorities.
Fortunately, the theorem can be reapplied to the reduced process set. Hence through
successive reapplication, a complete priority ordering is obtained (if one exists).

The following code in Ada implements the priority assignment algorithm; Set is an
array of processes that is notionally ordered by priority; Set(N) being the highest pri-
ority, Set(1) being the lowest. The procedure Process_Test tests to see whether
process K is feasible at that place in the array. The double loop works by first swapping
processes into the lowest position until a feasible result is found, this process is then
fixed at that position. The next priority position is then considered. If at any time the
inner loop fails to find a feasible process, the whole procedure is abandoned. Note that
a concise algorithm is possible if an extra swap is undertaken.

procedure Assign_Pri (Set : in out
Process_Set; N : Natural;

Ok : out Boolean) is
begin

for K in 1..N loop
for Next in K..N loop

Swap(Set, K, Next);
Process_Test(Set, K, Ok);
exit when Ok;

end loop;
exit when not Ok; -- failed to find a schedulable process

end loop;
end Assign_Pri;

If the test of feasibility is exact (necessary and sufficient) then the priority ordering is
optimal. Thus for arbitrary deadlines (without blocking), an optimal ordering is found.

4.20 Summary

There is an extensive literature on scheduling, with many techniques and theories de-
veloped and evaluated. In this section we have consider the main two approaches, fixed
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priority and EDF. But even for these topics we have not cover either is great detail.
There is a solid body of knowledge available that allows these techniques to be used in
industrial practice. For fixed priority scheduling the use of response time analysis has
proved to be an effective framework for analysing a range of application characteristics
and resource types. There is no single equation to apply in all circumstances, rather
there is an analysis framework that allows tailored verification tools to be produced. In
this section we have covered a few of the extensions that are available, many others are
possible.

Scheduling and planning must take place is all time bands. For activities to make
progress resources must be available and be used effectively. To guarantee that dead-
lines are met requires analysis that can predict the worst-case behaviour of concurrent
activities on the available resources. This analysis is the topic of the final main section
of the paper.

5 Timing Analysis

In all the scheduling approaches described above (that is, FPS and EDF), it is assumed
that the worst-case resource usage of each activity is known. This is the maximum any
activity invocation could require. In the following, we concentrate on the worst-case
execution time of software activities implemented on standard CPUs.

Worst-case execution time estimation (represented by the symbol C in the schedul-
ing analysis described earlier) can be obtained by either measurement or analysis. The
problem with measurement is that it is difficult to be sure when the worst case has
been observed. The drawback of analysis is that an effective model of the processor
(including caches, pipelines, memory wait states and so on) must be available. The real
worst-case execution of a code segment is in general not computable (it requires solving
the halting problem!) but lies somewhere between the worst-case observed and the best
safe estimate produced by analysis. Unfortunately the gap between these two bounds
can be significant with sizeable software components running on modern hardware.

Most analysis techniques involve two distinct activities. The first takes the process
and decomposes its code into a directed graph of basic blocks. These basic blocks rep-
resent straightline code. The second component of the analysis takes the machine code
corresponding to a basic block and uses the processor model to estimate its worst-case
execution time.

Once the times for all the basic blocks are known, the directed graph can be col-
lapsed. For example, a simple choice construct between two basic blocks will be col-
lapsed to a single value (that is, the largest of the two values for the alternative blocks).
Loops are collapsed using knowledge about maximum bounds.

More sophisticated graph reduction techniques can be used if sufficient semantic
information is available. To give just a simple example of this, consider the following
code:

for I in 1.. 10 loop
if Cond then
-- basic block of cost 100

else
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-- basic block of cost 10
end if;

end loop;

With no further information, the total ‘cost’ of this construct would be 10 × 100 + the
cost of the loop construct itself, giving a total of, say, 1005 time units. It may, however,
be possible to deduce (via static analysis of the code) that the condition Cond can only
be true on at most three occasions. Hence a less pessimistic cost value would be 375
time units.

Other relationships within the code may reduce the number of feasible paths by
eliminating those that cannot possibly occur; for instance, when the ‘if’ branch in one
conditional statement precludes a later ‘else’ branch. Techniques that undertake this
sort of semantic or control flow analysis usually require annotations to be added to the
code. The graph reduction process can then make use of tools such as ILP (integer linear
programming) to produce a tight estimate of worst-case execution time. They can also
advise on the input data needed to drive the program down the path that gives rise to
this estimation. For complex nested loop structures abstract interpretation methods can
be used. Here analysis is performed on the intermediate code level. Pattern-matching
methods exploit the fact that most compilers use the same group of machine instructions
to initialise, update and test loop counters [52].

Clearly, if a process is to be analyzed for its worst-case execution time, the code itself
needs to be restricted. For example, all loops and recursion must be bounded, otherwise
it would be impossible to predict offline when the code terminates. Furthermore, the
code generated by the compiler must also be understandable and analyzable.

The biggest challenge facing worst-case execution time analysis comes from the use
of modern processors with on-chip data and instruction caches, pipelines, branch pre-
dictors, speculative and out-of-order execution etc [53,41,3,30]. All of these features
aim to reduce average execution time, but their impact on worst-case behaviour can be
hard to predict. If one ignores these features the resulting estimates can be very pes-
simistic, but to include them is not always straightforward. One approach is to assume
non-preemptive execution, and hence all the benefits from caching etc can be taken into
account. At a later phase of the analysis, the number of actual preemptions is calculated
and a penalty applied for the resulting cache misses and pipeline refills.

The interaction between hardware features can result in complex optimisation prob-
lems that are extremely difficult to solve. For example, with an ‘if’ statement one branch
may result in a data cache miss, whilst the other branch may cause a instruction cache
miss – which is the worst? This problem is exasperated if the cache misses are condi-
tional on the path the process took through earlier ‘if’ statements.

Interactions can also cause what are called timing anomalies. There are contra-
intuitive instances where a local optimisation leads to a global penalty. An example
of this is described by Heckmann et al [31]. Here a single cache hit causes a branch
prediction failure that results in a prefetch that clears an area of cache that is needed
later. As a result, an initial cache miss will produce a shorter execution time, and hence
the cache hit sequence must be used for worst-case estimation.

Overall, to model in detail the temporal behaviour of a modern processor is non-
trivial and may indeed need proprietary information that can be hard to obtain. For
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real-time systems one is left with the choice of either using simpler (but less pow-
erful) processor architectures or to put more effort into measurement. Given that all
high-integrity real-time systems will be subject to considerable testing, an approach
that combines testing and measurement for code units (basic blocks or basic paths) but
control flow analysis for the process itself seems appropriate with today’s technology.
This is the so called hybrid approach which aims to combine the advantages of analysis
and measurement. However it does require a certain amount of instrumentation of the
target platform that may or may not be problematic. Nevertheless as Bernat states (as
cited in [18]) “the best model of the processor is the processor itself”.

Another difficulty with current timing analysis techniques and tools is that they do
not scale. Constraint satisfaction tools such as ILP cannot deal with the ten of thousands
of lines of code typically found in a single component of a modern system such as a
military or civil aircraft control system. Indeed code segment with close to half a million
statement are not unheard of in a number of application domains. This presents a real
challenge to the techniques and methods that are advocated for timing analysis.

5.1 Summary

The final form of analysis that needs to be carried out on any real-time system is the
determination of the worst-case execution times of the software components of the im-
plementation. The process by which the C values needed for schedulability analysis are
obtained can involve pure analysis, measurement, or a combination of the two.

Timing analysis has itself a broad body of literature that has identified many different
approaches. Early work was undertaken by Puschner [45,46]. It is beyond the scope of
this paper to give a comprehensive summary of the timing analysis literature, but it is
a key stage in the engineering process advocated in this paper. A recent survey [52]
covers most of the current literature and tools.

One area that is gaining attention due to the scale issues noted above is to moving
timing analysis onto a probabilistic foundation [8,24,17]. Clearly a simplistic approach
that assumes independence between features will not work, but there are methods pub-
lished that show promise [9].

6 Conclusion

This paper has described an engineering process for the development and verification
of real-time systems. The process is built upon a single model of behaviour but has
a number of aspects and abstractions. Firstly a system is considered to consist of a
number of time bands that represent dynamic behaviour at different granularities of
time. Timing properties within a band are represented by delays and deadlines. The
paper has explored the verification of these properties by model checking.

From a system defined in terms of delays and deadline an implementation over the
available resources must be produced and again verified. Schedulability analysis is the
term used for this verification stage, in this paper we have concentrated on fixed priority
scheduling (and Earliest Deadline First to some extent) of the final implementation with
verification via response time analysis supported by timing analysis.
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For simple systems, with periodic tasks for example, confidence in the timing state-
ments may be easy to obtain – although effective implementation may still be difficult to
ensure. The use of timed automata models and model checking does enable a high level
of confidence in the temporal characteristics of applications to be gained. Although we
argue that the process developed here increases the confidence with which real-time
systems can be developed, the approach is not completely formal.

Space considerations have limited the coverage of issues to do with the programming
of systems designed according to the model of behaviour outlined in this paper and the
programming languages suitable for this approach. These issues are however address
in a recently published paper [13]. Taken together that constitute an effective means of
delivering real-time behaviour.
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Abstract. In this chapter we provide an introduction to the RAISE
Specification Language and to the RAISE method. We concentrate on
the applicative style of RAISE, the style most commonly used initially
in development.

We also describe two examples. The first is a simple communication
system that allows the transmission of messages with the possibility of
higher priority messages overtaking others. The example illustrates the
use of abstract initial specification to capture vital properties, and of
more detailed concrete specification to describe a model having those
properties. The second example is a control system of a lift, and illus-
trates the use of model checking to gain confidence in a RAISE model.

1 The RAISE Specification Language

RAISE (Rigorous Approach to Industrial Software Engineering) was originally
developed during 1985–90 by a European collaborative project in the ESPRIT-I
programme involving four companies, two in Denmark and two in the UK. A
second project, LaCoS (Large-scale Correct Systems using Formal Methods) was
a continuation ESPRIT-II project (1990–95) involving nine companies in seven
European countries. LaCoS further developed the RAISE technology, particu-
larly the method and tools [1], and tested RAISE on a wide range of software
development projects [2].

The RAISE Specification Language (RSL) is a formal specification language,
i.e. a language with a formal, mathematical basis [3,4,5] intended to support
the precise definition of software requirements and reliable development from
such definitions to executable implementations. Particular aims of the language
were to support large, modular specifications, to provide a range of specifica-
tion styles (axiomatic and model-based; applicative and imperative; sequential
and concurrent), and to support specifications ranging from abstract (close to
requirements) to concrete (close to implementations). Complete information can
be found in the books on RSL [6] and the method [5], and a number of case
studies in [7].

RSL is a modular language. Specifications are in general collections of (related)
modules. There are two kinds of modules: schemes and objects. Schemes are
(possibly parameterised) class expressions, and objects are instances of classes.We
return to schemes and objects later in Sections 1.8, 1.9, and 1.10. For now, if
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you have an intuition about classes and objects in object-oriented programming
languages, then this intuition largely carries over into RSL.

1.1 Basic Class Expressions

There are several ways of making class expressions, but the most common is the
basic class expression that consists of the keywords class and end around some
declarations of various kinds. Each declaration is a keyword followed by one or
more definitions of the appropriate kind (Table 1).

Table 1. Declarations and their definitions

Declaration Kind of definition

object Embedded modules

type Types

value Values: constants and functions

variable Variables for storing values

channel Channels for input and output

axiom Axioms: logical properties that must always hold

test case Test cases: expressions to be evaluated by a translator or
interpreter

transition system Transition systems for a model checker

ltl assertion Temporal assertions to be checked by a model checker

No declarations are compulsory: many classes just contain type and value
declarations. The order in the table is a common one to use, but any order is
allowed, and there may be more than one occurrence of a kind of declaration.

Thedeclarationstest case,transition system,and ltl assertionwereadded
toRSLafter thepublicationof the twobooksonRAISE [6,5].Theyhaveno semantic
significance, being added solely to provide extra inputs for tools.

1.2 Types

RSL, like most specification and also programming languages, is a typed language.
That is, itmust be possible to associate eachoccurrenceof an identifier representing
a value, variable or channel with a unique type, and to check that the occurrence
of the identifier is consistent with a collection of typing rules. Such rules, such
as that typically prohibiting expressions like “1 + true”, are well known from
programming languages and we will not describe them further here.

Built-in Types. In order to be able to define the types of values etc. we need a
collection of types to use. RSL has seven built-in types (Table 2), and a number
of ways of constructing other types from these.

Equality = and inequality �= are also defined for all types.
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Table 2. Built-in types

Type Example values Operators

Bool true, false ∧, ∨, ⇒ ∼
Int ..., -1, 0, 1, ... +, −, ∗, /, \, ↑, <, ≤, >, ≥, abs, real
Nat 0, 1, ... Same as for Int
Real ..., -4.3, . . . , 0.0, . . . +, −, ∗, /, ↑, <, ≤, >, ≥, abs, int
Char ′a′, . . .

Text ′′′′, ′′Alice′′, ... As for lists of Char
Unit ()

Technically, the operators for Bool are properly referred to as connectives.
They differ from operators in that a “lazy” or “conditional” evaluation is used
for them: see Section 1.4. ∼ is negation. There is no need for ⇔ as it would be
the same as =.

Nat is a subtype of Int: all Nat values are also Int values. The operators are
mostly conventional: / for Int is integer division, and \ is remainder. ↑ for both
Int and Real is exponentiation; abs for both Int and Real gives the absolute
value. Int is not a subtype of Real: the operator real converts from Int to
Real, and the operator int from Real to Int, truncating towards zero.

Unit is a type with just one value “()”, also written as skip. It is used
mainly in imperative and concurrent specifications to provide a parameter type
for functions that do not need parameters, and to provide a return type for
functions that do not return values.

The operators and other symbols used to construct value expressions (which
we will see later in this chapter) are listed in Table 3. They are listed in increasing
order of precedence (P), so the prefix operators bind most tightly. The column
headed A indicates those that are associative, either right (R) or left (L).

Type Constructors. There are a number of type constructors for creating
types from other types, illustrated in Table 4.

The column headed P indicates the binding precedence of the type construc-
tors, where 1 is the highest. The column headed A indicates the constructors
that are right (R) associative; the others do not associate. So, for example:

Int × Real-set → Real∗ → Bool
means
(Int × (Real-set)) → ((Real∗) → Bool)

The product constructor × is used to form tuples. These may be pairs, triples,
etc. of any types. This constructor is not associative. For example, the products
Int × Text × Char and Int × (Text × Char) are different types: the first is
a triple, the second a pair containing a singleton and a pair.

-set, ∗ and →m create finite sets, list and maps respectively. There are also
the potentially infinite set (-infset), infinite list (ω) and infinite map ( ∼→m ) con-
structors, but they are rarely used.
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Table 3. Value expression precedences

P Symbols A

14 λ ∀ ∃ ∃! R

13 ≡ post
12 ��� � ‖ R

11 ; R

10 :=

9 ⇒ R

8 ∨ R

7 ∧ R

6 = �= > < ≥ ≤ ⊂ ⊆ ⊃ ⊇ ∈ �∈
5 + − \ � ∪ † L

4 ∗ / ◦ ∩ L

3 ↑
2 :

1 ∼ prefix operators

Table 4. Type constructors

Ctr P A Example expressions Operators

× 2 (1,true,’a’)

-set 1 {}, {1,2} hd, ∈, �∈, ∪, ∩, ⊂, ⊆, ⊃, ⊇, card, \
∗ 1 〈〉, 〈1,2〉 hd, tl, ∈, �∈, �, len, elems, inds
→m 3 R [ ], [ ′a′ �→ true, ′b′ �→ false ] dom, rng, hd, ∈, �∈, ∪, †, \, /, ◦

→ 3 R λ x : Int • x + 1 ◦

∼→ 3 R λ (x,y) : Int × Int • x / y ◦

card gives the number of elements in a (finite) set; len gives the length of a
(finite) list. For example:

card {} = 0
len 〈′a′, ′b′, ′a′〉 = 3

The operator ̂ is the concatenation operator for lists. For example:

〈1, 2〉 ̂ 〈2, 3〉 = 〈1, 2, 2, 3〉

Maps are relations, or associations, between pairs of values. Values on the
left of the pairs forming the association are said to form the domain, and those
on the right are said to form the range. Finite maps (→m ) are required to be
one-one or many-one, not one-many or many-many. In other words, a value in
the domain must not be associated with more than one value in the range. For
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example, the type Int →m Int contains the value [ 1 �→ 2, 2 �→4 ] but not the
value [ 1 �→ 2, 1 �→ 4 ]. The dom operator returns the domain (a set) and rng
returns the range (also a set). For example:

dom [ ] = {}
dom [ ′a′ �→ true, ′b′ �→ true ] = {′a′, ′b′}
rng [ ′a′ �→ true, ′b′ �→ true ] = {true}

The union (∪) of two maps is formed as if the maps were two sets of pairs and
the union of the two sets were the result. But it only gives a finite, many-one
map if the domains are disjoint: see below. The override operator † forms a map
by taking the union of the two domains, and associating each domain value with
the appropriate range value from the second map, if any, otherwise that from
the first map. So the second takes precedence over, or “overrides”, the first. For
example:

[ ′a′ �→ true, ′b′ �→ true ] ∪ [ ′a′ �→ false, ′c′ �→ false ] =
[ ′a′ �→ true, ′a′ �→ false, ′b′ �→ true, ′c′ �→ false ]

[ ′a′ �→ true, ′b′ �→ true ] † [ ′a′ �→ false, ′c′ �→ false ] =
[ ′a′ �→ false, ′b′ �→ true, ′c′ �→ false ]

We see that the union of two deterministic maps can be non-deterministic
(and hence in the type of possibly infinite maps constructed by ∼→m ), unless their
domains are disjoint, while override preserves determinacy. So it is good practice
either to never use union, or to only use it when the domains are disjoint.

There are two ways of reducing, or restricting a map. \ (the operator also
used for set difference) subtracts a set of elements from the domain. / restricts
the domain to values in its second argument. For example:

[ 1 �→ true, 2 �→ false ] \ {2,3} = [ 1 �→ true ]
[ 1 �→ true, 2 �→ false ] / {2,3} = [ 2 �→ false ]

→ is the constructor for forming total functions. A total function is one that
always returns a value when it is applied and always returns the same value for
the same argument. If a function returns some value, we say it terminates, and
if a function always returns the same value for the same argument we say it is
deterministic. So a total function is one that terminates and is deterministic for
all arguments. Consider tossing coins on a low-gravity planet as a function, with
the coin as an argument. It is non-deterministic, because each coin sometimes
lands one way up, sometimes the other. If gravity is so low that very light coins
are tossed into orbit, then the function does not terminate for some arguments,
as we wait for ever for the coin to land. A function that is not known to be total
for all arguments is called partial, and ∼→ is the constructor for partial functions.

We can define functions using “lambda-expressions” as shown in Table 4,
though these are not often used. The first, total function is the “add one” func-
tion for integers. The second, partial function, is the integer division function.
This is partial because it is not defined for division by zero.
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The operator hd applied to a non-empty set returns an arbitrary value from
the set. For a non-empty list, hd returns the first element. For a non-empty
map, hd returns an arbitrary element from the domain of the map. hd is not
defined when its argument is empty, so it is a partial operator. The definition of
hd for sets and maps was added to RSL after the publication of the two books
on RAISE [6,5].

For non-empty lists, tl returns the list obtained by removing the first element.
Note that hd returns an element, tl a list. For example:

hd 〈1, 2〉 = 1
tl 〈1, 2〉 = 〈2〉

∈ and �∈ for sets are conventional. For a list they refer to the element set; for
a map they refer to the domain. For example:

(1 ∈ {}) = false
(1 ∈ 〈0, 2〉) = false
(1 �∈ [ 1 �→ ′a′, 2 �→ ′b′ ]) = false

The definition of ∈ and �∈ for lists and maps was added to RSL after the
publication of the two books on RAISE [6,5].

Lists and maps may be applied like functions. For lists, the argument is an
integer in the range one to the length of the list inclusive. So an empty list
cannot be applied, a list of length one can be applied only to one, a list of length
two to one or two, etc. When the argument can be applied, the result is the
corresponding element of the list. For example:

〈′a′, ′b′〉(1) = ′a′

The elems of a list is the set of elements of it, and the inds (the indexes)
of a list is the set of possible integer arguments that it can be applied to. For
example:

elems 〈′a′, ′a′〉 = {′a′}
inds 〈′a′, ′a′〉 = {1, 2}

For maps, the possible arguments that it can be applied to are the values
in the domain, and the result is the corresponding value in the range. Since
we insist that finite maps are many-one, finite map application to values in the
domain is deterministic.

The operator ◦ is available for maps and functions, with the basic property
that, for two maps or two functions f and g :

(f ◦ g)(x) = f(g(x))
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Type Expressions. Type expressions are defined as one of the following:

– a built-in type
– a user-defined type
– a type formed from type expression(s) using a type constructor
– a subtype of another type expression

Subtypes are types that contain only some of the values of another type, the
ones that satisfy a predicate. For example, the type Nat is defined as the subtype

{| i : Int • i ≥ 0 |}

That is, it is a subtype of Int, and is the type containing those integers that
are at least zero.

Subtypes are commonly defined using functions, which makes them easier to
read. For example, suppose we wanted to define dates as triples of the form (day,
month, year), then we might use the subtype

{| (d, m, y) : Nat × Nat × Nat • is date(d, m, y) |}

where the predicate (Boolean function) is date is defined elsewhere, to constrain
m to the range one to twelve, and to constrain d according to m and whether y
is a leap year.

Type Definitions. Users can define their own types, and there are two kinds
of type definitions. Abbreviation definitions just define identifiers that one can
use instead of the defining expression. For example, here is a type declaration
containing two type abbreviation definitions:

type
Date base = Nat × Nat × Nat,
Date = {| (d, m, y) : Date base • is date(d, m, y) |}

Type abbreviation definitions take the form “identifier = type expression”
and, like all kinds of definitions, are separated by commas.

The second kind of type definition introduces an identifier for a new type.
This kind comes in four forms:

– abstract types, or sorts
– record types
– variant types
– union types

Abstract Types. These are just type identifiers. An abstract type is a type we
need but whose definition we haven’t decided on yet. They are commonly used
for two purposes:
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– There are many simple types, like identifiers for people, bank accounts, books
in a library, departments of an organisation, etc., that we expect to imple-
ment very easily in the final program, perhaps as numbers, or characters, or
strings. All we need is to use = to compare them, and = is defined for all
types, even abstract ones. There is a standard piece of advice in specifica-
tion that you don’t choose a design until you have to, so we typically leave
such types abstract. We may later discover during design that it is useful to
distinguish between identifiers for reference books and those for books that
may be borrowed, and we can then design a type with a suitable structure.
An added bonus is that different abstract types are regarded as different by
the type checker, so we avoid the danger of using a person’s identifier for a
book: the type checker will report an error.

– Sometimes we want to delay the design of a type not because it is simple,
but for the opposite reason: because it is complicated and we don’t yet know
what the design should be. There is more on this when we discuss the RAISE
method, especially in Section 1.8.

Records. Records in RSL are very much like those common in programming
languages. Here is an example that might be found in a system for a bookshop:

type
Book ::

title : Text
author : Text
price : Real ↔ new price

This defines a new type Book as a record with three components. Each com-
ponent has an identifier, called a destructor, and a type expression. Optionally a
record component can have a reconstructor. In our example the third component
has a reconstructor new price.

A record type definition also provides, implicitly, a constructor function for
creating a record value from its component values. The identifier of the construc-
tor is formed by putting mk on the front of the identifier of the type, so in our
case we have a constructor mk Book of type

Text × Text × Real → Book

and we can write, say, mk Book(′′Oliver Twist′′, ′′Charles Dickens′′, 9.95) as
a book value. We will call this value ot book.

Destructors are total functions from the record type to their component’s type
expression. For example, the type of price is

Book → Real

So we can apply price to a value of type Book to get its price. So we can write,
for example, price(ot book), and it would evaluate to 9.95. Note we do not write
ot book.price as would be found in some languages.
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Reconstructors are total functions that take their component’s type expression
and a record to generate a new record. The type of new price is

Real × Book → Book

When we write, say, new price(17.95, ot book) we get a new book value with
the same title and author as ot book, but with the price component set to 17.95.
We could also write this as mk Book(′′Oliver Twist′′, ′′Charles Dickens′′,
17.95).

Variants. Variant types allow us to define types with a choice of values, perhaps
with different structures. The simplest case is rather like the enumeration type
found in some programming languages, such as:
type

Colour == red | green | yellow

This defines a new type called Colour and three (different) constants (red,
green, and yellow) of type Colour.

But variant types allow richer structures. For example, the following type
defines binary trees holding values of some type Val:

type
Tree == nil | node(left : Tree, val : Val, right : Tree)

This defines a new type Tree, a constant nil of type Tree, a constructor node
of type

Tree × Val × Tree → Tree

and destructors left, val and right. The type of left, for example, is

Tree ∼→ Tree

The destructors are partial because they are not defined for nil trees.
Records are in fact special cases of variants: single ones. We could have defined

the same type Book that we used as an example of a record:

type
Book == mk Book(title : Text, author : Text, price : Real ↔ new price)

This illustrates the fact that variants, like records, can optionally include
reconstructors.

The type Tree is recursive: trees are defined in terms of trees. Variants are
the only type definitions that allow recursion.

Unions. Union type definitions allow us to make new types like variants out
of existing types. Suppose types B and C are defined somewhere. Then we can
define a type A as their union:
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type
A = B | C

This is in fact a shorthand for a variant, in which the identifier A, and the
type names B, and C are used to generate constructor and destructor identifiers:

type
A == A from B(A to B : B) | A from C(A to C : C)

In order for these constructor and destructor identifiers to be generated, the
constituents of a union must be names of user-defined types, and not general
type expressions.

With union types, implicit (unwritten) coercions are allowed from union com-
ponents to the union type. Suppose, for example, a function f has A as its para-
meter type. Then we can apply f to a value c of type C, simply by writing f(c).
This is short for f(A from C(c)). We could similarly apply f to values from B.

1.3 Values

Having introduced types, we can consider the values that populate the types.
We first see how to define values. We define values within value declarations,
where a value declaration consists of the keyword value followed by one or more
value definitions separated by commas.

The simplest value definition takes the form “identifier : type expression”, and
is called a typing, for example:

value
x : Int

This may look like a variable declaration in a language like C (though the order
of identifier and type is reversed in C) but it is really a constant declaration. x
is the identifier of a value, not of a variable: a variable is a location where values
can be stored, and the stored value can be changed. There is a possible confusion
between the way programmers use the term variable (which is the way we use
it) and the way a mathematician uses the term. The mathematician means by a
variable something whose value is not known, or does not matter, not something
whose value may change. The constant x defined above is more like a variable
in the mathematical sense: it is a constant but we don’t know, without more
information, what its value is. Such constants are not allowed in programming
languages, because there is not enough information about them. They are useful
in specification when, for example, we want to describe a lift (elevator) system
without saying how many floors the building has: the lift system can be described
for an arbitrary building.

Continuing with the same example, we might want to assume that the number
of floors is at least two. It is hard to imagine what a lift would do in a one storey
building, or what a building with zero or a negative number of floors would look
like. So we might use an implicit value definition:
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value
floors : Int • floors ≥ 2

(The type Int here could be replaced by Nat without changing the meaning.)
floors is a constant, but it must satisfy the predicate (logical expression) that
follows the bullet •. The definition is implicit in that we still don’t know what
the actual value of floors is.

Sometimes we know the value of a constant: the constant identifier is just a
convenient shorthand (and, as in a program, makes things easier to maintain).
We can use an explicit value definition:

value
floors : Int = 20

All three forms of value definition start with a typing, an identifier and a type
separated by a colon. The same applies if we want to define functions. First, a
function definition may just be a typing, as in:

value
name : Person → Text

This definition says that there is a total function from the type Person to the
type Text, i.e. “every person has name”. It is used typically when we haven’t yet
decided how to represent a person, i.e. Person is still an abstract type. Implicitly,
it says there must be enough information in the type Person for a name to be
extracted.

We can also define functions implicitly, with a postcondition:

value
square root : Real ∼→ Real
square root(x) as r post r ≥ 0.0 ∧ r∗r = x
pre x ≥ 0.0

This defines a function to produce square roots, but without specifying how
they should be calculated. It requires that the result r should satisfy the predicate
following post: it should not be negative and its square must equal the parameter
x. Since Real numbers only have Real square roots when they are not negative,
it is a partial function and we give it a precondition.

This function illustrates the fact that the type Real in RSL contains the
mathematical real numbers. This function is in practice not implementable in
a programming language using limited precision arithmetic, and we might pre-
fer a specification requiring the result r to be within some machine-dependent
tolerance of the mathematical square root.

The types Int and Nat are similarly not implementable in normal computer
arithmetic, because their values are unbounded. In practice this is usually not a
problem because we can be sure that the values used or generated will not be so
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large as to cause over- or underflow. If it is a problem we would have to write a
specification of how arithmetic in the actual implementation behaves.

The final kind of value definition is the explicit function definition. Here is an
example:

value
factorial : Int ∼→ Int
factorial(n) ≡ if n = 1 then 1 else n ∗ factorial(n−1) end
pre n > 0

Weneedapreconditionhere sinceourversionof factorial isnon-terminating for0
ornegativenumbers. The definition of factorial illustrates a recursive function, one
that is defined in terms of itself. It also illustrates the if expression in RSL.

Overloading and Distinguishable Types. Value identifiers in definitions
may be overloaded, i.e. the same identifier may be used to define different val-
ues, provided their types are distinguishable by the type checker. Types are
distinguishable unless they are subtypes of the same type. For example, Nat is
not distinguishable from Int (or any subtype of Int) because they are both sub-
types of Int. (Any type is a subtype of itself.) Similarly→ is not distinguishable
from ∼→, nor →m from ∼→m , nor -set from -infset, nor ∗ from ω. Int and Real
are distinguishable.

Built-in operators may be overloaded. For example, we might define a new
version of “+” as follows:

value
+ : Real × Int → Real
x + y ≡ x + real y

This is possible as the type of “+” is distinguishable from both possible types
of the built-in infix operator “+”, which are

Int × Int → Int
Real × Real → Real

1.4 Logic

We have seen several examples of predicates, expressions that (we hope) evaluate
to true or false. But we have to clarify several issues in order to define our logic.
In particular, we will need to define:

– what happens when expressions do not terminate, and
– what we mean by equality.

We know it is (unfortunately) easy enough to write programs that do not
terminate. The problem is present in specification as well, but we need to be
very clear about what it means. We could, for example, have written a poor
definition of factorial, forgetting the precondition:
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value
poor factorial : Int → Int
poor factorial(i) ≡ if i = 1 then 1 else i ∗ factorial(i−1) end

and then ask what the expression poor factorial(0) means. The technical an-
swer is chaos, a special expression in RSL that represents an expression whose
evaluation does not terminate. We need to distinguish in general between ex-
pressions and values. Constants like true and 0 are expressions that evaluate
to themselves. “1 + 1” is an expression that evaluates to the value 2. chaos is
an expression that does not evaluate: it does not terminate. So what about an
expression like “chaos + 1”? The general rule in RSL is “left-to-right” evalua-
tion, which means in this case we evaluate the left argument of +, and if this
terminates with a value, we evaluate the right argument. If this also terminates
with a value, we add the two values to get the value of the whole expression.
If either argument does not terminate, neither does the whole expression. So
“chaos + 1” is equivalent to chaos. So is “0 * chaos” that arises when we
evaluate poor factorial(0), that you might have thought should be 0. All infix
operators are evaluated the same way.

Equality, =, is an infix operator. So if we try to express the equivalence be-
tween “0 * chaos” and chaos we should not write

(0 ∗ chaos) = chaos

because this expression would evaluate to chaos, not to true. We write instead

(0 ∗ chaos) ≡ chaos

where the symbol ≡ is read as “is equivalent to”. Technically, two expressions are
equivalent when their semantics, their meanings, are equivalent. For values, and
more generally for any expressions that are deterministic, terminating, and read-
only (do not write to variables or do input or output on channels) equivalence
and equality are the same.

We use the equivalence symbol in explicit function definitions, and we can
now explain what a function definition means, namely “when the precondition
is true, the function application is equivalent to the defining expression”. This
definition does not say anything about the situation when the precondition is not
true. So, for example, we cannot say what factorial(0) is. The definition tells us
nothing: it may be chaos, or it may be some integer. We say it is underspecified.
This does not make it a bad specification. Rather, it tells us to be careful only
to use factorial when we are sure the argument is positive. We will see later in
Section 2.7 that there is a tool, called the confidence condition generator, to help
us check this.

It seems sensible to be able to assert as true that

n > 1 ⇒ (factorial(n) = n ∗ factorial(n−1))

for any integer n. This should be true for 0, so we want
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0 > 1 ⇒ (factorial(0) = 0 ∗ factorial(0−1))

to be true. That is, we want

false ⇒ chaos

to be true. This means that ⇒ should not behave like an infix operator, and
in RSL it does not. We call the symbols ⇒, ∧, ∨ and ∼ connectives and define
them according to the rules, for any expressions e1, e2, e:

e1 ⇒ e2 ≡ if e1 then e2 else true end
e1 ∧ e2 ≡ if e1 then e2 else false end
e1 ∨ e2 ≡ if e1 then true else e2 end
∼e ≡ if e then false else true end

To understand these, we need the evaluation rule for if expressions. This is:

1. Evaluate the expression following if.
2. If this does not terminate, the if expression does not terminate.
3. If it evaluates to true, evaluate the expression following then.
4. If it evaluates to false, evaluate the expression following else.

You can check that the definitions of the connectives and the evaluation rules
for if expressions give the same results as “classical” logic, which is only con-
cerned with the values true and false. For example:

false ⇒ false
≡ if false then false else true end definition of ⇒
≡ true evaluation rule for if expression

But now we also know what will happen when some expressions do not terminate.
For example, the following all evaluate to true:

false ⇒ chaos
∼(false ∧ chaos)
true ∨ chaos

The reason for including chaos in RSL is not that it is needed in specifica-
tions: you normally do not want your programs to loop forever! It is a useful
convenience in expressing the proof theory of RSL, which is what we mean by
the logic. (And even if chaos were not included, you could write a variety of
equivalent expressions, such as “while true do skip end”.)

The logic in RSL is called a conditional logic as it is based on conditionals
(if expressions). There are other approaches to the problems of non-terminating
expressions, such as the “logic of partial functions” (LPF) [8,9] which is used
by the specification language VDM [10]. Without going into the argument as to
which is better, we note two things:
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– ∨ and ∧ in RSL are only commutative if their arguments terminate. For
example:
(true ∨ chaos) ≡ true
(chaos ∨ true) ≡ chaos

– The connectives in RSL are implementable, because they can be translated
using if expressions in programming languages, which evaluate just like RSL
if expressions.

For LPF the opposite holds: ∨ and ∧ are always commutative, but the con-
nectives are in general only implementable when their arguments terminate.

Quantifiers. RSL includes the quantifiers ∀ (for all), ∃ (there exists) and ∃!
(there exists exactly one). For example, the following are all true expressions:

∀ i : Int • (i ∗ 2) / 2 = i
∀ i : Nat • ∃ j : Nat • j = i + 1
∃! i : Int • i ≤ 0 ∧ i ≥ 0

The quantification is over values in the type. It does not include expressions
like 1/0 or chaos.

Typings. What follows the quantifier is always a typing, just like the start of
every kind of value definition. But we can have more general forms of typing
than just an “identifier : type expression”: the identifier can be a binding.

Bindings. A binding is commonly just an identifier, but it can be parentheses
enclosing two or more bindings separated by commas. So the following are all
bindings:

x
(x,y)
(x,(y,z))

The identifiers in a binding must all be different.
In a typing, the structure of a binding must match the structure of the type: if

the binding is for a product, so must the type be. For example, if Pair is defined
as an abbreviation for Int × Int, the possible typings include the following:

x : Pair
(x,y) : Pair
((p,q),(x,y)) : Pair × Pair

but “(x,y) : Int”, for example, is not possible.
Bindings also occur as the formal parameters of implicit and explicit function

definitions (like the n in factorial(n) ≡ ...). What about a function f with type

A × B → ...

Does this have two parameters or one? In RSL you can take either view: the
formal application can be written f(a,b) or f((a,b)), or even f(p) (where p is a
binding for a pair).
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1.5 Value Expressions

We have already seen the literals, infix and prefix operators for various types in
Section 1.2, the Boolean connectives, if expressions and quantified expressions
in Section 1.4. There are some other value expressions that we describe in this
section.

Set Expressions. Sets may be formed in three ways:

1. enumerated sets like {} (the empty set), or {1,3,2}.
2. ranged sets (for integers only) like {1..3}, which is equal to the second enu-

merated set example. If the second number in the range is less than the first,
the ranged set is empty.

3. comprehended sets like { i/2 | i : Int • i ∈ {2..7} }, which is again equal
to the second enumerated set example. The predicate following • (called a
restriction) may be omitted, in which case it is as if it were true.

Other expressions may of course also represent sets. For example, a function
may return a set and then an application of the function will be a set expression,
an expression whose type is T-set for some type T. Similar remarks apply for
lists and maps.

List Expressions. Lists may be formed in three ways:

1. enumerated lists like 〈〉 (the empty list), or 〈2,1,2,3〉.
2. ranged lists (for integers only) like 〈1..3〉, which is equal to the tail of the

second enumerated list example. If the second number in the range is less
than the first, the ranged list is empty.

3. comprehended lists like 〈 i/2 | i in 〈2..10〉 • i < 8 〉 which is again equal to
the tail of the second enumerated list example. As with enumerated sets,
the restriction may be omitted. A comprehended list takes its elements from
another list expression, rather than a typing as with a set, and, see below, a
map.

Map Expressions. Maps may be formed in two ways:

1. enumerated maps like [ ] (the empty map), or [ 1 �→ true, 3 �→ true, 2 �→
false ].

2. comprehended maps like [ i �→ is odd(i) | i : Int • i > 0 ∧ i < 4 ], which is again
equal to the second enumerated map example (assuming an appropriate
definition of is odd). The restriction may be omitted, in which case it is as
if it were true.

Let Expressions. Let expressions are used in two main ways:

1. to destruct a product. For example:

let (x,y) = (1,2) in x + y end
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will evaluate to 3. First we evaluate the expression following the =. Then
we bind x to the first part, and y to the second. Finally we evaluate the
expression following the in.

2. to organise an evaluation into several steps. For example, a function to sum
a list of integers might be defined as:

value
sum : Int∗ → Int
sum(s) ≡

if s = 〈〉 then 0
else

let h = hd s, t = tl s, x = sum(t) in h + x end
end

This is particularly useful when the sub-expression like hd s would, without
the let, occur more than once. But even when this would not occur, let
expressions often improve readability.

Case Expressions. Case expressions are commonly used to express functions
over lists and over variant structures. For example, the sum function could be
written:

value
sum : Int∗ → Int
sum(s) ≡

case s of
〈〉 → 0,
〈h〉̂t → h + sum(t)

end

A case expression consists of a series of patterns plus associated expressions.
The case patterns are tried in order, the first pattern that matches is taken, and
the associated expression evaluated. The pattern 〈〉 matches the empty list. The
pattern 〈h〉̂t matches a non-empty list, and at the same time binds h to the
head and t to the tail.

An example of a case expression for a variant type is the body of a function
to calculate the depth-first traversal of a tree (Section 1.2), returning a list of
the values in the nodes of the tree:

value
traverse : Tree → Val∗

traverse(t) ≡
case t of

nil → 〈〉,
node(l, v, r) → traverse(l) ̂ 〈v〉 ̂ traverse(r)

end



68 C. George

The bindings in patterns may be replaced by “wildcards”, underscores, when
their values are not needed. For example, a function to calculate the depth of a
tree (assuming max is defined somewhere):

value
depth : Tree → Val∗

depth(t) ≡
case t of

nil → 0,
node(l, , r) → 1 + max(depth(l), depth(r))

end

The most commonly used case patterns are for lists and variants, but literals
are also possible, and there is a “wildcard” pattern that matches anything.
For example, a strange definition of is odd:

value
is odd : Nat → Bool
is odd(n) ≡

case n of
0 → false,
1 → true,
→ is odd(n−2)

end

1.6 Axioms

So far we have seen type and value declarations. There are also axiom decla-
rations, introduced by the keyword axiom and consisting of axiom definitions
separated by commas. Each axiom definition is a predicate, optionally preceded
by an identifier in square brackets. For example, instead of defining:

value
floors : Int • floors ≥ 2

we could write:
value

floors : Int
axiom

[ floors constraint ] floors ≥ 2

In fact all value definitions, functions as well as constants, can be written in
this style, a typing plus an axiom. There are “axiomatic” or “algebraic” speci-
fication languages, like Larch [11] and CASL [12], that use only this style, and
are also restricted to abstract types. This style can be used within RAISE, but
we choose also to have available the pre-defined sets, lists, maps, and products
that are characteristic of the “model-based” specification languages like Z [13],
B [14], and VDM [10].
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1.7 Test Cases

Test cases have no semantic meaning: they are like comments directed at an
interpreter or translator meaning “please provide code to evaluate these expres-
sions and report the results”.

The syntax of test cases is much like axioms, except that the test case expres-
sions can be of any type. For example, if we wanted to test the function to sum
a list of integers we might define
test case

[ sum0 ] sum(〈〉),
[ sum1 ] sum(〈1,2,2,3〉)

and expect to see the results

[sum0] 0
[sum1] 8

But a perhaps more useful style of test case is to include the expected result
in the test case, i.e. to write
test case

[ sum0 ] sum(〈〉) = 0,
[ sum1 ] sum(〈1,2,2,3〉) = 8

so that the output for every test case should be true.
Test cases were added to RSL after the publication of the two books on RAISE

[6,5].
Transition Systems and LTL Assertions. These are discussed in Section 5.

1.8 Modules

As we mentioned earlier, there are two kinds of module in RSL, schemes and
objects. Schemes are essentially classes, and objects are instances of classes, so
the basic thing is the class expression. These come in six forms: basic, extending,
renaming, hiding, with, and instantiation.
Basic Class Expressions. These were introduced in Section 1.1. They consist
of the keywords class and end with any number of declarations between them.
The declarations (and their constituent definitions) may come in any order.
There is no “define before use” rule in RSL. All the entities defined in the class
expression are exported (visible outside it) by default: there is nothing like an
“export” clause in RSL.

Extending Class Expressions. If C1 and C2 are class expressions:

extend C1 with C2

is an extending class expression. The declarations of C2 are added to those of
C1. The declarations of C2 can refer to entities defined in C1, but not vice versa.
The declarations of C1 and C2 must be compatible, which simply means that
duplicate definitions are not allowed, any more than they would be in a single
class expression.
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Renaming Class Expressions. If C is a class expression:

use id1
′ for id1, ..., idn

′ for idn in C (n ≥ 1)

is a renaming class expression in which the entities id1, ..., idn are exported with
identifiers id1

′, ..., idn
′: they are renamed. The entities may be types, values,

variables, channels or objects.

Hiding Class Expressions. If C is a class expression:

hide id1, ..., idn in C (n ≥ 1)

is a hiding class expression from which the identifiers id1, ..., idn are not exported.
Hiding is most commonly used to hide objects, variables, channels and auxiliary
functions (functions only intended for use within the original class to define other
functions). Hiding is used to prevent access from outside the class, and also used
to hide auxiliary functions or other entities that we don’t expect to use in later
developments, because hidden entities do not need to be implemented.

With Class Expressions. If C is a class expression:

with O1, ..., On in C (n ≥ 1)

is a with class expression. O1, ..., On are object expressions (see Section 1.10).
The meaning of with X in C is that an applied occurrence of a name N in C
can mean either N or X.N, so that, in particular, we can write just N instead of
X.N. (It is similar to “using namespace” in C++.)

The with class expression was added to RSL after the publication of the two
books on RAISE [6,5].

Scheme Instantiations. If we define a scheme called S, say:

scheme S = C

then we can use S to mean the class expression C, for example in “extend S
with ...”: the occurrence of S here just means the same as C. The occurrence of
S is called an instantiation of S.

But it is also possible to parameterise a scheme, and we discuss this in the
following section.

1.9 Parameterised Schemes

The most common use of parameterised schemes is to make generic schemes.
For example, we considered earlier the type of binary trees. We may want more
than one kind of binary tree: one to hold integers, another to hold names, etc.
But we would like to define the type Tree and its associated functions only once.
We can proceed as follows:
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– We define a class to act as the scheme parameter. Commonly we use a scheme
to define this class:

scheme ELEM = class type Elem end

This is a very simple, as well as a very common scheme to define a parameter.
But there are no restrictions on what we can put into a parameter’s class
expression. This makes the parameterisation mechanism in RSL much more
powerful than, for example, templates in C++.

– We define a generic scheme TREE using ELEM as a parameter:

scheme TREE(E : ELEM) =
class

type
Val = E.Elem,
Tree == nil | node(left : Tree, val : Val, right : Tree)

...
end

The abbreviation definition of Val is just a commonly used convenience. We
could omit it, replacing all other occurrences of Val with E.Elem.
Technically the parameter “E : ELEM” is like an object definition (see Sec-
tion 1.10). E is the identifier of an object, so E.Elem means the type Elem
defined in the object E.

So how do we make trees of integers, say? We need to make an instantiation
of TREE, and the actual parameter we need is an object, just as the formal
parameter is an object. So we define an object I, say:

object I : class type Elem = Int end

and now the scheme instantiation TREE(I) is what we want. The formal de-
finition of TREE(I) says that it is the class expression of TREE with every
occurrence of the object identifier E replaced by I. So, in particular, the defin-
ing type expression of the type Val will be I.Elem, which we can see from the
definition of I is just an abbreviation for Int.

For type checking, there is a condition between the class of the formal para-
meter E and the class of the actual parameter I. This is that the latter must be
a static implementation of the former. This means that for every entity in the
formal parameter there must be an entity in the actual parameter of the same
kind (type, object, value, variable or channel) with the same identifier and:

– for types, if the formal type definition is an abbreviation, the actual type
definition must be an abbreviation for a type that is maximally the same

– for objects, the defining class in the actual parameter must statically imple-
ment the defining class in the formal parameter
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– for values, variables and channels, the types in the actual and formal para-
meters must be maximally the same.

Here “maximally the same” means the types must not be distinguishable (see
Section 1.3).

The actual class expression may contain more entities than the formal.
Schemes can have several parameters. For example, we might define a generic

database:

scheme DATABASE(D : ELEM, R : ELEM) =
class

type
Domain = D.Elem,
Range = R.Elem,
Database = Domain →m Range

...
end

and we can instantiate DATABASE with two different objects, or the same
object twice.

Sometimes we find we have an object that defines the things we need for
the actual parameters, but with the wrong identifiers. For example, the RAISE
method (Section 2) suggests defining a number of simple types that will be
used throughout the specification in a scheme TYPES, and making an object
T from this. Now suppose TYPES defines types Id and Name, and we want to
instantiate the DATABASE with Id as the domain type and Name as the range
type.

We can instantiate DATABASE as

DATABASE(T{Id for Elem}, T{Name for Elem})

The construct {id1
′ for id1, ..., idn

′ for idn} is called a fitting. It acts as if the
fitting had been applied to the formal parameter class as a renaming.

It is possible to have parameters which depend on each other. For example
we could define:

scheme S(E : ELEM, T : TREE(E)) = ...

Then if we define objects by, say:

object
I : class type Elem = Int end,
TR : TREE(I)

then S could be instantiated as S(I, TR).
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1.10 Object Declarations

Technically class expressions denote, or mean, classes (collections) of possible im-
plementations of them. We get different possible implementations with abstract
types (since any type can be used as an implementation) and with underspecified
values. The possible implementations are called objects. Object declarations con-
sist of the keyword object followed by one or more object definitions separated
by commas.

If C is a class expression, we can define an object O by:

object
O : C

and O denotes some object in the class C.
If x is an entity in C (and not hidden or renamed in C), then, in the scope of

this object definition, x can be referred to by the name O.x. This is sometimes
called a qualified name, and the prefix O the qualifier.

The universal access any can also be qualified. For example, the access clause
read O.any in a function signature allows the function to read any variable
defined in the object O (including variables defined in any objects defined in C).
This is often needed to write the signatures of functions that invoke functions
in imperative modules, since variable and channel names are commonly hidden.

It is also possible to define object arrays in RSL. The object name is given a
formal parameter in the form of a (list of) typings. For example, a collection of
buffers indexed by a type Index could be defined by

object
B[ i : Index ] : BUFFER

and the expression B[e].put(d), where e is an expression of type Index, and put
a function defined in BUFFER, would be used to put data value d in the buffer
indexed by the value of e.

1.11 Comments

There are two kinds of comment supported in RSL. Block comments are opened
by /* and closed by */. They may be nested. Line comments are opened by
-- and closed by the end of a line (or file). Both kinds of comment are allowed
anywhere where white space would be allowed.

Line comments were introduced, and the original restriction on the use of block
comments to only certain syntactic constructs was removed, after the publication
of the two books on RAISE [6,5].

2 The RAISE Method: Writing Initial Specifications

As long as you conform to the syntax and type rules of RSL, you can describe
and develop software in any way that you choose. But there are a number of
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ideas for using RSL that have been found useful in practice, and that collectively
we describe as “the” RAISE method.

Writing the initial specification is the most critical task in software develop-
ment. If it is wrong, i.e. it fails to meet the requirements, then following work
will be largely wasted. It is well known that mistakes made early in the life-cycle
are considerably more expensive to fix than those made later, precisely because
they cause so much time and effort to be expended going in the wrong direction.
But we should clarify this to say that it is mistakes made and not quickly found
that are expensive. We can’t guarantee that we won’t make mistakes, but if we
can discover them quickly then not too much harm is done.

What kind of errors are made at the start? The main problem is that we may
not understand the requirements. They are set in some domain in which we are
usually not experts, while the people who wrote them, to whom the domain is
familiar, tend to forget to explain what to them is obvious.

In addition, requirements are written in a natural language, like English or
Chinese, and as a result are likely to be ambiguous. They are often large doc-
uments developed by several people over a period of time. As a result they are
often contradictory: what they say on one page may differ from what they say
on another.

The aim of the initial specification is to capture the requirements in a formal,
precise manner. Formality means that our specification has just one meaning, it
is unambiguous. By capturing the requirements we mean rewriting them in our
terms, creating our model of what the system will do. So how can we check that
the model we create accurately models what the writer of the requirements has
in mind?

Be Abstract. The specification should be abstract, it should leave out as much
detail as possible. The requirements may demand that identifiers have a certain
format, or that dates should be presented in a particular style, or that calcula-
tions should be done to a certain degree of accuracy, or that a user screen should
have a certain appearance, but we try to extract the essential information: that
there are identifiers, presumably different for each different entity they identify,
that we need dates, that certain calculations need to be done, that users may
be requested for certain information and as a consequence they may be pre-
sented with other information, or the system’s state may be changed in certain
ways. We know that we can fill in the details later: we can design the details
of user screens provided the information to be presented is available or can be
calculated, and provided we know what input to demand.

Use Users’ Concepts. The concepts in the specification should be the same as
the user’s concepts. If the requirements say that each customer has an account,
and an account is a record of all the customer’s transactions, then that is what the
specification should say. It should not refer to concepts like databases, tables, and
records: these are computer concepts that describe ways of solving the problem,
while what we want to do first is describe the problem, not its solution.
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Make it Readable. Specifications are intended to be read by others: by those
who are to check that they correspond to requirements, by those who are to
implement them, by those who are to write test plans, by those who later want to
maintain the system, etc. So we want to make them as readable as possible. The
guidelines here are very much like those for programming languages: meaningful
identifiers, comments, simple functions, modules that are coherent and loosely
coupled, etc.

Look for Problems. We recall that what we want to do is avoid mistakes, or
find them quickly. So we concentrate on the things that appear difficult, strange,
or novel, and we ignore or defer things that are straightforward. We might be
mistaken as to what is hard, of course, but we hope that with some experience
we have a feeling for such things. In capturing requirements we are also trying
to find out if the system we intend to develop is feasible, at least within our
budget constraints, and so we want to be assured as early as possible that we
have appropriate solutions to all the problems. If we don’t, we may need to do
some experimentation or research before we commit ourselves further.

Minimise the State. State information should be minimal. This means in
particular that we try hard not to include in the state dependent information:
information that can be calculated from other information in the state. If C
can be calculated from A and B, then we should not model C as part of the
state. If C is stored as part of the state, together with A and B, then we will
need a consistency condition that what is stored for C is the same as would be
calculated from the stored A and B. There is a general notion that the simpler
the set of consistency conditions needed, the better the state is designed. It may
be that later we decide we need to store C, to achieve sufficient speed, but this
should be done as a later stage of development.

When we refer to the state of a system we mean the information that is
stored, that persists between interactions with it. We also speak of the state of a
module, where we mean the part of the state associated conceptually with that
module, which will typically provide functions to change it and report on it.
We use the term global state where necessary to refer to the state of the whole
system, as opposed to that of a module, or of a group of modules that we see as
a subsystem.

Identify Consistency Conditions. While we try to make the state minimal,
it is still usually the case that we need consistency conditions and policy con-
ditions. Consistency conditions are needed if some possible state values cannot
correspond to reality: two users of a library borrowing the same copy of a book
simultaneously, perhaps. Policy conditions are ones that might perhaps arise in
reality, but we intend that they should not happen: a user borrowing too many
books at one time, perhaps.

If our system’s state cannot correspond to reality then it becomes essentially
useless: it cannot tell us who really has the book, and we probably cannot trust
any information it might give us. Preserving consistency conditions is more crit-
ical for the healthiness of our system than keeping within policy.
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We identify the consistency requirements first because sometimes we can think
of a state design that will reduce the need for consistency conditions. For exam-
ple, if we record a borrower against a copy of a book, only one such borrower can
be recorded and the inconsistency of two simultaneous borrowers cannot occur.
We need to bear the consistency conditions in mind during development, as we
will want our functions to maintain consistency, and our initial state to establish
it.

Sometimes consistency is dealt with by a subtype: we can record the number
of books someone can borrow as a Nat, for example, to prevent it being negative.
But often consistency requirements will involve more than one module, and then
it is generally better to define a function expressing it, but not try to impose
it as a subtype. When there are several modules involved it may not always be
true during processing: we will merely want to establish that, starting from a
consistent state, every top-level function will generate another one.

There are several common sources of possible inconsistency that arise in many
domains, because they relate to common data structures:

– Much data is modelled as maps, allowing us to use identifiers as references.
These identifiers may then be used elsewhere, and we need to ensure that
every reference is to data that exists. For example, the borrower of a copy
of a book should be a registered user.

– Sometimes we have relations that relate values of some type to itself, like
“child” or “part of” relations. Then we typically need to ensure that there
are no cycles in the relation, or else functions using the relation are likely
not to terminate.

– It may be possible to access information in two ways (which is an indication
that our state is not minimal, but may be done for efficiency reasons, espe-
cially in refinements of the initial specification). Then we need to check that
the two ways to access information give the same result. If we can find out
borrowers from information about copies of books, and find out copies bor-
rowed from information about borrowers, then we can state as a consistency
conditions (a) that the recorded borrower of a book (if any) has a borrow
record for that copy for that book, and (b) that each copy in the set of copies
borrowed by a borrower has the borrower recorded.

Consistency conditions help us write functions, or at least they help us avoid
mistakes in functions that would occur if we overlooked consistency. They also
have a relation to preconditions. Preconditions serve two main purposes:

1. They allow us to avoid unsafe or unpredictable situations, like dividing by
zero, or in general applying a function or operator when its result would be
undefined or non-terminating.

2. They allow us to avoid situations where we would otherwise break consis-
tency. So a function borrow, for example, might include in its precondition
that the user involved is registered.

It is not usually a good idea to include consistency as part of preconditions.
The reason for this is that functions at the top level, accessible by our users (peo-
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ple or other software), will generally need to have preconditions checked when
they are invoked. Checking consistency typically involves searches through all
the state and this would be too inefficient. (At the same time, including a simple
check even though it is implied by consistency is sensible as part of “safety-
first” style.) We instead, as we mentioned above, take steps during development
to ensure that our functions all preserve consistency, and that our initial state
establishes it, so we can then assume it to be true.

Policy conditions are generally separated from consistency. States that violate
policy requirements are possible in the real world, and if our system is to be a
faithful model of the real world it must also allow them. Such states are often
used to generate warning messages, raise alarms, or instigate corrective actions,
so we still need to define precisely what the policy conditions are so that we can
specify how to check them.

2.1 Kinds of Module

We identify two kinds of module that we find most commonly used: global objects
and state components.

Global Objects. Global objects are objects declared at the top level, in a
separate file. In general, they are not advised, because they have too wide a
scope. But there are typically a collection of, in particular, types that we need in
many places, such as identifiers for various kinds of entity, and it is convenient
to collect these in one global object. Dates and a few functions or operators like
≤ to compare them, and perhaps also periods modelled as pairs of dates, or a
date and a duration, are other common candidates. Global objects should not
include any part of the state.

Another guide to when types should be in a global object is that types visible
to users, i.e. types that occur as parameters to user functions or in the results
of user functions, should generally be defined in one.

State Components. Most modules will contain a type modelling (a part of)
the state, together with functions to observe it and generate values of it, and
we term these state components. Generators usually include functions to change
state values, and perhaps also to create them. The type is often called the type
of interest of the module. Such modules are usually defined as schemes, and
typically instantiated within others, as we will see in Section 2.2. Modules should
have only one type of interest.

We write separate modules for each state component because we can then
enforce a discipline that the part of the state within the module is only accessed
through the functions defined for it. This enables us, for example, to change
the way that part is modelled without affecting anything else, so long as we
maintain the original properties. Such a technique is known as encapsulation
through information hiding.

Object oriented approaches to program design follow the same ideas: they
typically call the observers and generators methods.
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2.2 Module Hierarchies

There are several suggested principles in creating a collection of modules to
model a system:

– Each module should have only one type of interest, defining functions to
create, modify and observe values of the type.

– The modules should as far as possible form a hierarchy: each module be-
low the top one should be instantiated in only one other, its parent, as an
embedded object, and its functions should only be called from its parent.

This leads naturally to a top-down style of specification and development. As
we decide on the concrete type for a module, perhaps involving several com-
ponents, then as long as these component types are non-trivial we define new
modules for them as children of the original.

The restriction to a hierarchy sometimes seems more complicated than, say, a
collection of global objects each defining one part of the state, with objects able
to call functions in any others. But such designs have definite disadvantages:

– The many interdependencies mean that changes to a module may affect
many others, so maintenance is more difficult.

– They are harder to test individually. With a hierarchy there is natural testing
order that tests children before parents.

– In a concurrent system it is hard to ensure that the system will not deadlock.
Following the guidelines for developing concurrent systems from sequential
ones in the RAISE method book [5] means that freedom from deadlock is
guaranteed by a simple syntactic check.

It may not be clear why we suggested using embedded objects to link child
modules to their parents. There are three possibilities to use one module (the
child) in another (the parent), which we consider in turn:

1. Merging the specifications textually into a single module. This is clearly not
very sensible. Apart from breaking the suggestion that there only be one type
of interest per module, the resulting large module is hard to read, the child
cannot be reused elsewhere, it is tedious to hide the child components (as
they must be hidden individually), and there may be name clashes between
the two parts.

2. Writing the parent as an extension (extend S with ... where S is the scheme
defining the child). This gives two separate modules, and so is readable, and
the child module S can be reused, but it still suffers from the disadvantages
that it is hard to hide the child components, and there may be name clashes
between the two parts. (We typically use extend to add definitions to an ex-
isting type of interest, or perhaps to make a subtype of it, such as defining an
interest-bearing deposit account by extending a basic account specification.)

3. Instantiating the child as an object within the parent. The separate modules
are small and readable, the child is reusable, the child can be hidden merely
by hiding its object identifier, and name clashes cannot occur because within
the parent specification all the entities from the child have an object identifier
qualifier. Hence this is normally the best solution.
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2.3 Sharing Child Modules

Consider the proposed module structure in Figure 1.

SYS

SUB_SYS1 SUB_SYS2

BUFFER

Fig. 1. Sharing a child module

If we take the advice about instantiating children as objects in parents, then
in SYS we get two objects, called S1 and S2 perhaps, and in each of SUB SYS1
and SUB SYS2 we get an object B, say, instantiating BUFFER. How many
buffers are there? There are two. We can see this because in SYS they have
names S1.B and S2.B, and RSL is constructed so that different names imply
different objects: there is no possibility of “aliasing”, of having different names
for the same variable, channel or object. Different objects will have different
variables, different channels, and different embedded objects, even if they are
instantiations of the same scheme.

If the buffers are intended to be different, this is fine. But what if the two
sub-systems want to share one buffer, perhaps for passing information between
them? This will break the normal idea of hierarchical design that child modules
are independent, since a call in SYS of a function in S1, say, can result in a
change in state of both B and S2. But sometimes it is necessary. We then have
to be more careful than usual how we call child functions from SYS.

If we need such a design, there are two ways to achieve it. The first is to make
a global object B, say, from BUFFER, and use this in both SUB SYS1 and
SUB SYS2. Now there is one buffer (because there is only one name for it) and
so the two sub-systems must be sharing it. But other modules can also access it.
What we probably want is for the buffer to be shared between the sub-systems,
but be hidden within SYS.

The second solution us to use parameterisation. We make BUFFER a para-
meter of both SUB SYS1 and SUB SYS2 :

scheme SUB SYS1(B : BUFFER) = ...
scheme SUB SYS2(B : BUFFER) = ...

and in SYS we define the following objects:

object
B : BUFFER,
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S1 : SUB SYS1(B),
S2 : SUB SYS2(B)

Now we can see that there is only one buffer object B, which is defined in
SYS and can be hidden there. The objects of the two sub-systems now share
this buffer because any mention of a name prefixed by B in their specifications
is now bound to that name defined in the object B in SYS.

2.4 Validation and Verification

Validation is the check that we have written the right specification, i.e. that we
have met the requirements. It has nothing to do with internal properties: one
can have a perfectly satisfactory description of a tunnel when what is wanted is
a bridge, and no detailed inspection of the tunnel’s description can uncover the
fact that it is not what is required. Such a gross disparity between requirements
and specification is unlikely, of course, but the basic fact remains: to validate a
specification we must look outside it, at the requirements.

Validation therefore cannot be formalised because, usually, requirements are
written in natural language. But it is a very important step: if we make mis-
takes in the initial specification then the following effort may be wasted! Many
software projects have failed because requirements were incomplete, inconsis-
tent, infeasible given the effort available, or misunderstood. Note that we are
concerned with errors in the requirements themselves as well as with errors we
make in modelling them. So we try in writing specifications to actively consider
whether what we read seems sensible, complete and consistent. In creating a
formal model we tend to come up with many questions, and generating these
questions to ask of the people responsible for the requirements (the customers)
has proved to be extremely beneficial in detecting problems at the start of the
project. We try to be abstract, but that is not the same thing as being vague!

The main technique in validation is to check that each requirement is met.
When we have written the initial specification we go back to the requirements
and for each issue that we can find, we should conclude one of the following:

– It is met.
– It is not met, and we need to change the specification.
– It is not met because we think it is not a good idea (because of infeasibility,

or for consistency with other parts, perhaps) and we need to discuss with
the customers.

– It will be deferred to later in the development. This applies to “non-functional
requirements” like the intendedprogramming language oroperating system, or
performance requirements, but also to things that we have not yet designed,
like aspects of the user interface or particular algorithms to be used. In this case
we add it to a list of the requirements againstwhich later development stepswill
be validated. We need, of course, to have in mind a development strategy that
will allow such requirements to be met eventually.

There are also other validation techniques we can use:
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– With experience, we can read the specification to look for properties that
it will have that are not mentioned in the requirements. To take a trivial
example, when we specify data storage, we naturally ask if it may become
full, and if so what should happen. It may be that the user has not con-
sidered the possibility. Another example is whether a data structure should
be initialised, and if so to what? This is typical of the kind of issue that
may seem so obvious to the customers, who know the domain well, that
they omitted to mention it. Scenarios, or use-cases, often lack essential but,
to the customer, “obvious” steps. We should set up a formal procedure of
queries to customers and their answers being documented.

– We should develop system tests (test cases and expected results) along with
the specification. Doing this often helps to clarify the requirements, and
these can also be shown to the customers, who will usually find them easier
to read than the formal specification [15,16].

– It is possible to rewrite the requirements from the specification. This is an
expensive task, but generally produces requirements documents that are
clearer, better structured, more concise, and more complete than the origi-
nals.

– We can prototype all or part of the system, perhaps by doing a quick and
simplified refinement of the abstract types in it, and using the translators to
SML or C++ (see Section 2.9) in the RAISE tools to run some test cases.
We can also let the customers use it to get more feedback from them.

– We can model check the system. This normally means making some changes
to make the system finite (with known size parameters), adding a transition
system, and defining some suitable temporal logic assertions to be checked.
See Section 5 for an example.

Providing early feedback to the customers in the form of queries, test cases,
rewritten requirements, or prototypes has the added advantage of committing
them to what has been done so far, and helps demonstrate to them the added
cost and danger of later requirement changes, the bane of every software project
manager’s life! We try to make the initial specification a contract between us
and the customers.

Verification is the check that we are developing the system correctly, so that
the final implementation conforms to the initial specification. It must come after
validation, since it assumes the correctness of the initial specification. We discuss
it as part of the next section on refinement.

2.5 Refinement

We mentioned earlier that we develop by “invent and verify”: we invent a more
concrete version of a module and then verify that it is correct with respect
to previous one. The formal relation that must exist between the two is the
refinement relation, sometimes also called the implementation relation.

The refinement relation needs to be transitive: we want to develop, say, from
A0 to A1 and then from A1 to A2, checking refinement at each step, and be
assured that A2 must refine A0. Additionally, refinement needs to be monotonic
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with respect to building modules from other modules. Suppose module A is
developed through version A0 to the final A2 as above, and module B has first
version B0 that instantiates A0 and is developed (perhaps by other people) to
B1, say, that still instantiates A0. Now we want to integrate the final versions. We
write module B2 that differs from B1 only in substituting the identifier A2 for
the identifier A0 : see Figure 2. We want, provided A2 refines A0 and B1 refines
B0, that B2 should be guaranteed to refine B1 and hence B0. Monotonicity is
what gives this guarantee. If this were not true we could not conveniently develop
modules separately. Effectively A0 is a contract between the developers of B and
the developers of A: it says to the developers of B what A will provide, and to
the developers of A what they must provide. Just how the latter group does this
should be of no concern to the former.

scheme A0 = ...

scheme B2 = ... object A : A2 ...

scheme B1 = ... object A : A0 ...

refinement

scheme A1 = ...

substitution

scheme A2 = ...

scheme B0 = ... object A : A0 ...

Fig. 2. Separate development

The refinement relation should also hold in instantiations of parameterised of
schemes: the class of each actual parameter should be a refinement of the class
of the corresponding formal parameter.

The formal definition of refinement can be found in the RAISE method book
[5]. Here we give an intuition. It has two components. For A1 to refine A0 we
require:

– The signature of A1 must include the signature of A0. That is, A1 must con-
tain all the entities (types, values, variables, channels, and objects) with the
same names and the same maximal types or, for objects, with classes that
are in the same relation. This relation, termed static implementation, was
introduced earlier in Section 1.9. The relation is necessary for the monotonic-
ity property: we need to be able to replace references to A0 with references
to A1 in other modules without causing type or scope errors. The signature
we are concerned with does not include hidden entities: these do not need
to be included in refinements. The relation is also one of inclusion: A1 may
have more entities than A0.



Applicative Modelling with RAISE 83

– All the properties of A0 must hold in A1. Properties may be expressed as
axioms, but also include definitions of constants and functions, initial values
of variables, and the restrictions in subtypes. Property preservation is clearly
transitive.

The first of these conditions can be checked statically, and the RAISE tools
do this as part of type checking. The second is not statically checkable, and
in general requires proof for full verification. But the “R” in RAISE stands for
“rigorous”: the method allows for the conditions to be checked informally, by
hand. The amount of proof we do will depend on how critical the system is, and
how much budget we have. Proof is expensive because it involves considerable
time and also skilled, experienced people to do it. It is unfortunately the case
that the kinds of proofs that arise in software development are generally beyond
the capabilities of automated proof tools. The RAISE tools include support for
proof via a translator to the language of the proof tool PVS [17].

2.6 Lightweight Formal Methods

It is possible to use formal methods without proof, and even without refinement:
the initial specification is sufficient to explore the problem and provide a basis for
implementation. Such use of a formal method is sometimes called “lightweight”.
It is found that most of the benefit of a formal method is in analysing and
capturing requirements, in identifying and resolving requirements issues at the
start of development, and in providing a sound basis for implementation. If the
specification is not too complicated, implementation may be done directly from
it.

There are some formal techniques that we can employ, that may or may
not employ proof, that we can adopt to increase confidence in specifications:
confidence conditions and theorems. We consider these in turn.

2.7 Confidence Conditions

Confidence conditions are conditions that should probably be true if the module
is not to be inconsistent, but that cannot in general be determined as true or
false by an automatic tool. The following conditions are generated by the RAISE
tools:

1. Arguments of invocations of functions and operators are in subtypes, and,
for partial functions and operators, preconditions are satisfied.

2. Values supposed to be in subtypes are in the subtypes. These are generated
for
– values in explicit value definitions;
– values of explicit function definitions (for parameters in appropriate sub-

types and satisfying any given preconditions);
– initial values of variables;
– values assigned to variables;
– values output on channels.
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3. Subtypes are not empty.
4. Values satisfying the restrictions exist for implicit value and function defin-

itions.
5. The classes of actual scheme parameters implement the classes of the formal

parameters.
6. For an implementation relation, the implementing class implements the im-

plemented class. This gives a means of expanding such a relation or expres-
sion, by asserting the relation in a theory and then generating the confidence
conditions for the theory.

7. A definition of a partial function without a precondition (which generates
the confidence condition false).

8. A definition of a total function with a precondition (which generates the
confidence condition false).

Examples of all the first 4 kinds of confidence conditions listed above are gen-
erated from the following intentionally peculiar scheme (in which line numbers
have been inserted so that readers can relate the following confidence conditions
to their source):

1 scheme CC =
2 class
3 value
4 x1 : Int = hd <..>,
5 x2 : Int = f1(-1),
6 x3 : Nat = -1,
7 f1 : Nat -~-> Nat
8 f1(x) is -x
9 pre x > 0
10 type
11 None = {| i : Nat :- i < 0 |}
12 value
13 x4 : Nat :- x4 < 0,
14 f2 : Nat -> Nat
15 f2(n) as r post n + r = 0
16 end

This produces the following confidence conditions (which are all provably
false). The first part of each condition is a reference to its source in the form
file:line:column:

CC.rsl:4:19: CC:
-- application arguments and/or precondition
let x = <..> in x ~= <..> end

CC.rsl:5:18: CC:
-- application arguments and/or precondition
-1 >= 0 /\ let x = -1 in x > 0 end
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CC.rsl:6:14: CC:
-- value in subtype
-1 >= 0

CC.rsl:8:5: CC:
-- function result in subtype
all x : Nat :- (x > 0 is true) => -x >= 0

CC.rsl:11:26: CC:
-- subtype not empty
exists i : Nat :- i < 0

CC.rsl:13:8: CC:
-- possible value in subtype
exists x4 : Nat :- x4 < 0

CC.rsl:15:5: CC:
-- possible function result in subtype
all n : Nat :- exists r : Nat :- n + r = 0

It is usually sufficient to carefully inspect confidence conditions rather than
trying to prove them. Most of the time it is easy to see that the conditions are
OK, but they are a good way to find errors, particularly in the first category
where we apply a function forgetting its precondition.

There is a danger when proving confidence conditions, since they can indicate
an inconsistency in the module. For example, scheme CC above asserts through
the definition of x3 that −1 is in the type Nat. This is false, and so this definition
implies the property false. CC is therefore inconsistent and anything can be
proved about it. In particular, all the provably false confidence conditions above
can also be proved true! So if we try to prove confidence conditions we must
proceed with care.

2.8 Theorems

Theorems are formal statements about specifications that we state separately:
they are intended to be consequences of the specifications, not part of their
definitions. They can be proved, formally or by hand, or just examined carefully.
Even when not proved they can be useful as part of the documentation.

Theorems can be stated in RAISE by means of a theory module. A theory
takes the form:
theory name :
axiom
...
end

where ... is one or more axiom definitions. To support theories there are two
extensions to the RAISE syntax that are useful:
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– The implementation relation � C1 � C0, where C1 and C0 are class expres-
sions. The implementation (or refinement) relation was described in Sec-
tion 2.5.

– The class scope expression in C � expr, where C is a class expression and
expr is a Boolean expression which may reference entities defined in C.

Generating confidence conditions for an implementation relation will expand
it into its constituent properties, allowing us to examine them without necessarily
proving them, or perhaps only proving some.

Typically if we want to do proof we will concentrate on critical properties.
For example, if there are system consistency properties that should always be
maintained, we can formulate as theorems the property that they are maintained
by our generators (provided any preconditions hold). For example, suppose in
scheme A, gen is a generator with a parameter of type U, T is the type of interest,
and can gen is a function expressing the precondition of gen, so the definition of
gen looks like:

value
gen : U × T ∼→ T
gen(u, t) ≡ ...
pre can gen(u, t)

Then the theorem we would write is:

in A � ∀ u : U, t : T •

consistent(t) ∧ can gen(u, t) ⇒ consistent(gen(u, t))

Consistency conditions are a good choice for doing proofs. Generating the
wrong result values of functions often shows up in testing, but creating inconsis-
tencies in the system may not show up until some time after the inconsistency
was created, and so it may be hard to find them in testing and hard to identify
when and how an inconsistency was originally generated.

Inclusion of checking consistency is also a good thing to include in test cases.
But only with a proof can one be sure that a generator will never cause an
inconsistency.

Finally, one should not forget the value of code reading by peers. This is a
comparatively cheap and very effective means of discovering errors, and can be
applied to specifications as much as to code. In fact it is generally easier to read
specifications than programming language code. They are more abstract, and
are intended to be read by people rather than machines.

2.9 Generating the Executable Program

The traditional development route is from RAISE to a programming language
like C++ or Java. The RAISE tools available from UNU/IIST’s web site
www.iist.unu.edu include a translators from a subset of RSL to C++ and
SML (though the latter is intended mainly for prototyping and testing). Parts

www.iist.unu.edu
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of specifications may need to be translated to SQL, say, if part of the specifica-
tion is intended to specify a database. The original RAISE tools [1] also include a
translator to Ada. There is advice on translation by hand, including translation
of concurrency, in the RAISE method book [5].

But there are many other possibilities. The paper [18], for example, uses AWK
as the implementation language.

3 When Not to Use RAISE

We do not mean to give the impression that RAISE or a similar software spec-
ification language should be used to define all software systems. There are ex-
ceptions, and we give some examples in this section.

3.1 There Is a Special-Purpose Formalism

There are many special-purpose formalisms (sometimes with associated tools)
that can sometimes be used in preference to a general purpose language like
RSL. For example, BNF is a standard notation for defining grammars, and has
associated tools like flex and bison for generating parsers and building abstract
syntax trees. BNF is well defined, and provides a well-known, convenient, and
compact notation. Copying this in RSL could be done, but the result would be
less concise and still require the equivalent of flex and bison to be developed.

Real-time systems, ones which depend heavily on precise timing, such as real-
time schedulers and process control systems, are often better analysed using
a special-purpose formalism like Duration Calculus (DC) [19]. (There is some
ongoing work to add real-time features to RSL [20,21,22].)

Another example is defining semantics of languages. There are notations like
Structured Operational Semantics [23] that have their own compact notations
that would be much less readable in RSL.

3.2 The Effort Is Not Worth the Gain

Sometimes there is a language adapted to a particular kind of application that
allows the implementation to be written at a level that is very close to how one
would specify it. An example is the RAISE tools [24]. These were written in a
language Gentle [25] that is a high level language intended for use by compiler
constructors. The RAISE tools were written in this language without writing a
specification of them. The reason is that for the type checker, for example (the
first tool written and a basis for all the others) it was felt that the scope and
type rules could not have been written at a much more abstract level: the actual
error messages, and some details about input and output to files, which were
largely copied from another system, would have been almost the only things left
more abstract. So in this case the executable program (Gentle is executable in
that it translates to C) is also the specification. There is, of course, a definition
of the semantics of RSL (using a special-purpose formalism) that includes the
static semantics (the scope and type rules) but the tools were not developed with
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close reference to this (and RSL has also been extended): the tool developer had
a very good working knowledge of RSL having worked on its original design.

Another, rather different, example is graphical user interfaces. The top level
RAISE specification of a system defines the functions that may be accessed by
users, which may be people or other software. In the case of people, graphical
user interfaces are common, and there are many languages and tools to aid their
construction. A main feature of such interfaces is that they are functionally
simple. They help users select the function they want to invoke (often with menus
or buttons), they ask for the necessary inputs to be provided (by selection or on
forms) and they display or output results. The top level specification describes
what functions are available, shows through their signatures what inputs are
needed and what results will be returned, and defines what preconditions need
to be checked. All that needs to be done is the design of the graphical part, the
definition of helpful messages when preconditions are violated, and perhaps the
design of convenient output formats for extensive result values. There seems in
practice little point in trying to specify these aspects, especially the graphical,
visual ones.

4 Example 1: Message Transport

We describe a system intended to model the transport of messages. The require-
ments are:

– Messages can be inserted and extracted.
– There may be some delay between a message being inserted and it being

available for extraction.
– The extraction order should be the same as the insertion order, except that

there should be some possibility of higher priority messages “overtaking”
lower priority ones.

– It is not necessary to guarantee that the next message extracted is the highest
priority one in the system. This is ideal, but may not always be possible.

We will keep the “messages” completely abstract, and only assume that a
“priority”, for simplicity a natural number, is part of a message. Higher numbers
give higher priorities.

We will model the system in terms of two buffers, one holding messages
“in transit” and one holding messages that have “arrived” and are waiting
to be extracted. Transfer of messages between the two will be essentially non-
deterministic.

The “transit” buffer will be modelled as a FIFO buffer, a queue, and the
“arrived” buffer as a priority queue.

4.1 The Initial Specification

The initial specification should try to capture the important properties of the
system. If the system is small, like this one, it may be possible to do this in a
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single module. Otherwise, we may have to initially model the system in terms
of its major components, and specify the properties of these components.

In a typical development there are a number of types and perhaps some func-
tions over them that will be used in many components. Typical examples are
identifiers and simple data structures like dates. Such types are not intended
to become the state types of the imperative objects of the final system. It is
convenient to place these in one or more modules that are made generally avail-
able to the other modules in the system. Such global sharing is in general not
a good idea, and it is possible to define such types in modules which are then
shared through parameterisation. But the number of parameters of modules can
as a result grow quite alarmingly. So the method suggests that such types and
their associated functions are made globally available and so can be freely refer-
enced. Obviously, in a large development, careful control needs to be applied to
changing such modules, but the advantages seem to outweigh the disadvantages.

For our system, we see the type of messages, and the notion of message priority,
beingcandidates for suchaglobalmoduleandwedefineaschemeTYPES(figure3).

scheme
TYPES =

class
type Message

value
priority : Message → Nat,

leq : Message × Message → Bool
leq(m1, m2) ≡ priority(m1) ≤ priority(m2)

end

Fig. 3. The scheme TYPES

TYPES illustrates the basic components of modules. They are built from class
expressions of which the simplest is the basic class expression class . . . end with
declarations within. Here we have a type declaration and a value declaration.
The type declaration defines a type Message. This is an abstract type, or sort :
it is not defined in terms of any other types.

Values are introduced by giving their names and types. priority is a function
value: it takes Message values as parameters and produces Nat results. Such a
function obviously represents an attribute of its parameter type. Nat, as indi-
cated by its bold face, is built-in to RSL. It is the type of natural numbers (the
non-negative integers). Built-in types like Nat have associated operators like +
and ≤.

The value leq is another function representing a relation on messages: it takes
a pair of messages and returns a Boolean. Bool is another built-in type, con-
taining the values true and false. It has associated connectives ∧ (conjunction),
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∨ (disjunction),⇒ (implication), and ∼ (negation). leq is given a concrete defin-
ition: the ordering on messages is the corresponding ordering on their priorities.

There are two kinds of modules in RSL, schemes and objects. A scheme is a
named class expression. A class expression denotes its class of models, essentially
all the things that could be used as implementations of it. A possible model of a
message is a pair of a text string and a priority. Another possible model is a triple
of a destination, text, and priority. And so on. An object denotes a particular
model.

We want to share the notion of message and priority between other modules.
So they cannot just share the scheme TYPES as it has many models. We need
to share the same model. We do this by creating the object T (figure 4) from
the scheme TYPES.

context: TYPES
object T : TYPES

Fig. 4. The object T

We define an object by giving a name and a class: TYPES is the name for its
class.

There is an analogy between objects/classes and values/types, and we write
“T : TYPES” just as we might write “i : Int”. But objects in RSL are not the
same as values, and classes are not the same as types.

Since the type Message in TYPES is abstract, we do not know which model
T represents. But this does not matter: we can refine the type Message later.
All we need to know for now is that all modules referring to T will refer to the
same model.

Now we can write the initial specification.
Initial specifications are typically abstract: the properties are described in

terms of axioms rather than constructively in terms of a concrete model. The
initial specification for our system is A MESSAGE0 (figure 5). We use a conven-
tional prefix “A ” in the name A MESSAGE0 to indicate an applicative module,
since there will be imperative and perhaps concurrent versions developed later.
We also use a conventional suffix “0” since we expect to make a more concrete
version “1”.

In A MESSAGE0, we refer to the type Message defined in the object T as
T.Message. The type of the second parameter of buffered, T.Message∗, is the
type of finite lists, or sequences, of values of type T.Message. “∗” is one of the
type constructors of RSL. Others are products, or tuples (as used in the result
type of get); sets; and maps. Each comes with syntax for creating values, like
“(x,y)” for a pair (2-tuple), 〈〉 for the empty list, 〈x,y〉 for a list of two values.
There are also associated operators like ∪ (set union), ̂ (list concatenation), hd
and tl for the head and tail of a (non-empty) list.

The type of get uses ∼→, which indicates that it is a partial function. That is,
it might not be defined for all parameter values. We expect get not to be defined
when can get is false.



Applicative Modelling with RAISE 91

context: T
scheme

A MESSAGE0 =
hide buffered, permutation, count in

class
type Buffer
value

put : T.Message × Buffer → Buffer,

get : Buffer
∼→ T.Message × Buffer,

can get : Buffer → Bool,
buffered : Buffer × T.Message∗ → Bool

axiom
[ can get ax ]
∀ buff : Buffer • buffered(buff, 〈〉) ⇒ ∼ can get(buff),

[ buffered put ]
∀ buff, buff′ : Buffer, l : T.Message∗ , m : T.Message •

buffered(buff, l) ∧ put(m, buff) = buff′ ⇒
buffered(buff′, l � 〈m〉),

[ buffered get ]
∀

buff, buff′ : Buffer,
l : T.Message∗ ,
m1, m2 : T.Message

•

buffered(buff, l) ∧ can get(buff) ∧ get(buff) = (m1, buff′) ⇒
(∃ l1, l2 : T.Message∗ •

l = l1 � 〈m1〉 � l2 ∧
buffered(buff′, l1 � l2) ∧
(m2 ∈ elems l1 ⇒ ∼ T.leq(m1, m2))),

[ no loss or gain ]
∀ buff : Buffer, l1, l2 : T.Message∗ •

buffered(buff, l1) ∧ buffered(buff, l2) ⇒ permutation(l1, l2)

value
permutation : T.Message∗ × T.Message∗ → Bool
permutation(l1, l2) ≡

(∀ m : T.Message • count(m, l1) = count(m, l2)),

count : T.Message × T.Message∗ → Nat
count(m, l) ≡ card { i | i : Nat • i ∈ inds l ∧ l(i) = m }

end

Fig. 5. The scheme A MESSAGE0
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In making put a total function, we are assuming our system has unlimited
capacity. A more realistic version would include a can put function, initially
underspecified, that we would later define in terms of maximum capacities of
the queues involved. A capacity of a queue could be defined either in terms of
the numbers of messages or in terms of storage consumption. For the latter we
would need a size attribute of messages.

We model the state of the system by defining an abstract type Buffer. Values of
type Buffer will depend on the sequence of messages input and not yet extracted.
But we expect this dependency to be nondeterministic. Messages may be in
transit and so not yet ready for extraction, so it may not be the case that the
highest priority message input will be the next one extracted. Conversely, we do
not necessarily expect to be able to discover from the state of the buffer what the
actual input order of messages was. Suppose, for example, that messages m1 and
m2 have both arrived and are ready for extraction, with m1 of higher priority
than m2. We cannot tell which of these messages was input first unless we add
extra information not in the requirements, like including the time of sending
of messages. We therefore model the connection between the input sequence of
messages and the buffer state not as a function from one to the other, but as a
relation, expressed by the function buffered. This is introduced, like the other
three functions in the first value declaration of A MESSAGE0, just by giving
the name and the type.

There are a number of properties that our system must have in order to meet
its requirements. These are expressed in the axiom declaration.

Each axiom consists of an (optional) name in square brackets, followed by a
Boolean expression, a predicate.

can get ax asserts that if the input list of messages is empty, the buffer must be
empty (i.e. nothing can be extracted from it). The converse is not necessarily
true, as input messages may be in transit and not available for extraction.

buffered put expresses the properties of a put. The new state is the buffering
of the message appended to the end of an input list of the previous state.

buffered get expresses the properties of a get. If a message is extracted it must
have been input, the rest of the messages are retained, and any messages
overtaken must have lower priority. elems is a built-in operator returning
the set of elements in a list. ∈ is set membership.

no loss or gain expresses the property that messages are not lost or invented:
for any given buffer state the collection of messages is fixed.

The specification is very loose in that it allows a range of implementations.
At one extreme, the internal state might be just a FIFO queue, and there would
be no overtaking by higher priority messages. At the other extreme, the internal
state might be just a priority queue, with the highest priority message always
the next one to be extracted. Our implementation will be between these two
extremes. This reflects the requirements.

Since messages might be duplicates (as the requirements did not prohibit this)
we have to be careful about defining the “collection” of messages. We use two
extra functions to express this notion, permutation and count. inds is the set
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of index values of a list. For example, the list 〈x, y〉 has index values 1 and 2.
Applying the list (as if it were a function) to the index value 1 returns x, the
first element. And so on. cardinality is the number of elements in a set. The
argument of card is a comprehended set, in this case the set of index values i of
the list l for which applying l to i gives the message m.

All types, even sorts, have equality and inequality defined automatically. This
enables us to write equalities between, for example, pairs of Message and Buffer
as in the buffered get axiom. Equalities between tuples are defined pointwise.

There are in fact two kinds of equality in RSL: = and ≡. = just compares
values, and is essentially the equality found in programming languages. ≡, as
used in function definitions like that of leq in TYPES, is the semantic equivalence
between expressions. As long as we avoid problems of undefinedness, the two
are the same for applicative specifications. When we come to imperative and
concurrent specifications we shall see that expressions may have effects, such as
assigning to variables, and equivalent expressions must have the same effects as
well as returning the same values, while expressions are equal if they return the
same values.

Unlike many languages, RSL has no “define-before-use” restriction. permuta-
tion, for example, is used before it is defined. This gives useful flexibility, and
modules are commonly written “top-down” as here, with details coming later.

The functions buffered, permutation, and count are just used to express ab-
stract properties. We do not intend to implement them in the final system and
so we hide them.

But before proceeding from the initial, abstract specification to a more con-
crete one we must validate the specification against the requirements. We go
back to the requirements and check carefully that each requirement is either
satisfied, or we have a development route in mind from the initial specification
that can make it so. There are usually many requirements that should be de-
ferred because they introduce detail that we are still leaving abstract. In a more
realistic system there might be requirements about the maximum size of mes-
sages, the maximum rate at which the system should be able to deal with them,
the programming language to be used, the machine architecture, the operating
system, and so on.

It is almost always the case that writing the initial specification generates lots
of questions about the requirements. Can there by duplicated messages? Are pri-
orities linearly ordered? Are there limits on the buffer size? Writing specifications
tends to find the inconsistencies and omissions which requirements documents
in natural languages are typically full of.

This specification A MESSAGE0 may well look rather complicated. It is not
in general very easy to find such specifications. A common alternative approach
is to start with the more concrete specification like the one we will present in
section 4.2. More concrete specifications are generally easier to write, and allow
us to explore the problem in more concrete terms. Then we can write the abstract
specification later, having obtained a better grasp of the problem. Formally, since
we will then show that the abstract specification is correctly implemented by the
concrete one, the result is the same.
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4.2 The Concrete Applicative Specification

We recall our intention to model the system in terms of a queue of messages
in transit and a priority queue of messages that have arrived but are yet to be
extracted. We need to create specifications of these two queues.

Modules like queues should be made generic so that they can be reused. To
define such a generic module we first use a standard parameter module that
gives the parameter requirements.

Parameter Classes. For the queue the parameter class ELEM (figure 6) is
simple.

scheme ELEM = class type Elem end

Fig. 6. The scheme ELEM

For the priority queue we need a total ordering on elements. We could add
the necessary features to ELEM by extension, but we here choose to use para-
meterisation to first define the scheme PARTIAL ORDER (figure 7), and then
to define TOTAL ORDER (figure 8) by extension.

context: ELEM
scheme

PARTIAL ORDER(E : ELEM) =
class

value
leq : E.Elem × E.Elem → Bool

axiom
[ reflexive ] ∀ a : E.Elem • leq(a, a),

[ transitive ]
∀ a, b, c : E.Elem • leq(a, b) ∧ leq(b, c) ⇒ leq(a, c)

end

Fig. 7. The scheme PARTIAL ORDER

The formal parameter of PARTIAL ORDER essentially defines an object E
of class ELEM.

TOTAL ORDER illustrates another way of making a class: by extending an-
other class. Extension is very much like inheritance in object-oriented languages:
all the declarations of the first class are inherited by the second.

There is no restriction in RSL on the classes that may be used to make
parameter classes.
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context: PARTIAL ORDER
scheme

TOTAL ORDER(E : ELEM) =
extend PARTIAL ORDER(E) with

class axiom [ linear ] ∀ a, b : E.Elem • leq(a, b) ∨ leq(b, a) end

Fig. 8. The scheme TOTAL ORDER

Queues and Priority Queues. Queues are easily specified in terms of lists,
and we have seen there is a built-in RSL list type. We present first the simpler
FIFO queue A QUEUE (figure 9).

context: ELEM
scheme

A QUEUE(E : ELEM) =
class

type Queue = E.Elem∗

value
empty : Queue = 〈〉,

put : E.Elem × Queue → Queue
put(e, s) ≡ s � 〈e〉,

get : Queue
∼→ E.Elem × Queue

get(s) ≡ (hd s, tl s) pre ∼ is empty(s),

is empty : Queue → Bool
is empty(s) ≡ s = 〈〉

end

Fig. 9. The scheme A QUEUE

A QUEUE is completely concrete: the type Queue, the constant empty, and
the functions put, get and is empty are all defined explicitly. It is not clear
that the constant empty is required, but we will need it later for initialising the
corresponding imperative queue.

We follow Guttag [26] in using the term “type of interest” for the type Queue
in A QUEUE. Buffer is the type of interest of A MESSAGE0. It is the type that
an applicative module is trying to define, together with associated functions for
generating and observing values of the type. For a module like A QUEUE, with
no subsidiary modules, the type of interest will become its state type when we
make an imperative object of it.

The priority queue A PRI QUEUE is presented in figure 10. For its type of
interest we use an ordered list of elements.

The ordering of the type Pri queue is expressed using a subtype expression.
The type Queue in A QUEUE includes all finite lists of elements. The type
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context: TOTAL ORDER
scheme

A PRI QUEUE(E : ELEM, T : TOTAL ORDER(E)) =
hide is ordered in

class
type Pri queue = {| l : E.Elem∗ • is ordered(l) |}

value
empty : Pri queue = 〈〉,

put : E.Elem × Pri queue → Pri queue
put(e, s) ≡

case s of
〈〉 → 〈e〉,
〈h〉 � t →

if T.leq(e, h) then 〈h〉 � put(e, t) else 〈e, h〉 � t end
end,

get : Pri queue
∼→ E.Elem × Pri queue

get(s) ≡ (hd s, tl s) pre ∼ is empty(s),

is empty : Pri queue → Bool
is empty(s) ≡ s = 〈〉,

is ordered : E.Elem∗ → Bool
is ordered(l) ≡

(
∀ i, j : Nat • {i, j} ⊆ inds l ∧ i < j ⇒ T.leq(l(j), l(i))

)
end

Fig. 10. The scheme A PRI QUEUE

Pri queue only includes those finite lists of elements that are ordered according
to the function is ordered.

A PRI QUEUE requires TOTAL ORDER as a parameter, which in turn re-
quires ELEM, so we need two parameters. Such a use of parameters might be
considered “higher order” but causes no problems in RSL.

A PRI QUEUE also illustrates the use of case and if expressions.
From the type of put we can assume that the second parameter is an ordered

list. But this type also claims that the result value will be an ordered list. Since
we have an explicit definition, there is the possibility of a contradiction here,
and we should check that the defining expression will indeed be an ordered list
if the second parameter is. That is, we should prove the theorem

∀ l : E.Elem∗, e : E.Elem •

is ordered(l) ⇒ is ordered(put(e, l))
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This is an example of what is called in RAISE a confidence condition. There
is a tool in the RAISE toolset that generates such conditions. Others arising
from this specification are that the empty list is ordered (from the definition of
empty) and that the definition of get produces an ordered list.

The other common type of confidence condition arises from applications of
functions or operators that have preconditions and/or have subtype parameters.
The applications of hd and tl in the definition of get will generate the confidence
conditions that their arguments are not empty, and perhaps remind us that a
precondition is needed for get. In the definition of is ordered, the applications
of the list l to the arguments j and i will generate the conditions that these
arguments are in inds l. Any call of get in another module using A PRI QUEUE
will generate the confidence condition that its argument is ordered and not
empty.

Confidence conditions can be proved formally or checked informally. The latter
is often sufficient; the kinds of errors they point to are usually oversights and
soon corrected once identified. We also have to beware of the danger, though
it seems slight in practice, that a confidence condition can be proved precisely
because there is a contradiction, from which anything can be proved.

The Concrete Applicative Message System. Having defined the two types
of queue, we can use them to form the new top-level specification A MESSAGE1
(figure 11).

We instantiate the two component queues as objects which are hidden in
A MESSAGE1. This is the most common way of using component modules.
Hiding them ensures that only the upper module has access to them and so
gives control over how they are used. No other part of the overall system can
access them.

We can use the object T for both parameters of A PRI QUEUE, as the class
TYPES of T meets the implementation requirements for both. We want to use
Message for the type Elem, and we can achieve this with a fitting applied to the
first actual parameter.

If we had not included an appropriate leq function in TYPES, or if it had
been defined differently, such as by a function higher, say, then we could have
defined an extra object in A MESSAGE1 to use as the second parameter of
A PRI QUEUE:

object
T1 : class

value
leq : T.Message × T.Message → Bool
leq(m1, m2) ≡ ∼ T.higher(m1, m2)

end

We need to check that the class of the actual parameters of A PRI QUEUE
and A QUEUE implement the classes of the formal parameters (see section 4.3).
Most of this is checked statically by tools, but we must also check that the
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context: A PRI QUEUE, A QUEUE, T
scheme

A MESSAGE1 =
hide PQ, Q in

class
object

PQ : A PRI QUEUE(T{Message for Elem}, T),
Q : A QUEUE(T{Message for Elem})

type Buffer = PQ.Pri queue × Q.Queue

value
put : T.Message × Buffer → Buffer
put(m, (pq, q)) ≡ (pq, Q.put(m, q)),

get : Buffer
∼→ T.Message × Buffer

get(pq, q) ≡
let (e, pq′) = PQ.get(pq) in (e, (pq′, q)) end
pre can get(pq, q),

can get : Buffer → Bool
can get(pq, q) ≡ ∼ PQ.is empty(pq),

shift : Nat × Buffer → Buffer
shift(n, (pq, q)) ≡

if n = 0 ∨ Q.is empty(q) then
(pq, q)

else
let (m, q′) = Q.get(q), pq′ = PQ.put(m, pq) in

shift(n − 1, (pq′, q′))
end

end
end

Fig. 11. The scheme A MESSAGE1

definition of leq in TYPES satisfies the properties expressed in the axiom of
TOTAL ORDER, plus the two axioms it inherited from PARTIAL ORDER.

We can use the types of the component objects PQ and Q to provide the con-
crete type Buffer for the upper module, here using a product. RSL also provides
a record type constructor that we could have used. Records are isomorphic to
tuples, but provide a richer syntax for extracting and changing components, and
are particularly useful when there are more components.

The definition of shift illustrates the use of the let expression. The form used
is a shorthand for the nested let

let (e, q′) = Q.get(q) in
let pq′ = PQ.put(e, pq) in
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shift(n − 1, (pq′, q′))
end

end

When a message is put into the combined queue it is initially added to the
“transit” queue Q. Messages are extracted from the “arrived” queue PQ with
get. We have included a function shift to transfer a number of messages (if
available) from one queue to the other. shift has effectively been added to the
user interface of the system. Without it the system would meet its “safety”
requirements, but not its “liveness” requirements. A safety requirement is that
“nothing bad happens”: messages do not get lost; lower priority ones do not
overtake higher priority ones. A (simple) liveness requirement is that “something
good happens”: input messages can eventually be extracted. We will see later
how to put shift inside the system.

We intend A MESSAGE1 to be correct with respect to A MESSAGE0. What
this means and how we check it is presented in the next section.

4.3 The Implementation Relation

The implementation relation between classes (also termed the refinement rela-
tion) is the relation used to define the correctness of a development step from a
more abstract module to a more concrete one.

Parameterised schemes have objects as formal parameters, and objects must
be used as actual parameters. There needs to be a relation between the classes
of the formal and actual objects. This is also the implementation relation, as we
remarked earlier.

Class B implements a class A (written B � A) if and only if

1. the signature of B includes the signature of A
2. all the properties of A hold in B

The first condition is called static implementation. It means that

– for every type in A there is a type of the same name in B, and with the same
defining type if the type in A is not a sort

– for every value, variable, or channel in A there is a value, variable, or channel
in B with the same name and same maximal type (i.e. ignoring subtypes)

– for every object in A there is an object in B of the same name with a class
that statically implements the class of the object in A.1

1 The original version of RSL [6] allowed schemes to be defined in classes, with the ob-
vious static implementation requirement. These are disallowed in the later version [5]
to simplify the logic. There are also good methodological reasons for this restriction.
There is no danger in making all schemes global (not defined within a class) — unlike
objects which need to be protected against global access, particularly when they are
imperative. The problem with a scheme defined inside a class is that it may refer to
entities defined in the rest of the class, and this is bad practice since we believe that
such sharing should generally be made explicit through parameterisation.
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The second condition involves the properties of a class, which arise from

– axioms
– value definitions
– subtype conditions on values, variables and channels
– initialisations of variables
– properties of objects defined in the class

A formal definition of the properties of a class is given in the method book
[5].

We can see that if we can show that A MESSAGE1 implements A MESSAGE0
we will have shown that all the functions we were supposed to provide (put and get)
are still supplied, and that their now concrete definitions satisfy the axiomswe used
to express the required properties. So, if A MESSAGE0 met the requirements,
A MESSAGE1 will.

Checking Implementation. Static implementation can be checked by tools.
For the properties part we generally need to do proof. We can choose to do it
formally or (partly or wholly) informally.

It is a good idea to first document an informal argument. Then we (or, better,
someone else) can decide if it is sufficiently convincing, or whether some parts,
or even all of it, should be done using a proof tool.

A very informal argument is that the two queues never lose or create elements.
For each, put adds an element and get may remove one, while the others remain.
put and get at the top level call put and get respectively at the lower level,
and therefore have similar properties to the lower level functions. Finally, shift
transfers the same number of elements from one queue to the other. Thus we
can see there is no loss or gain of messages.

A QUEUE clearly maintains its order of elements. A PRI QUEUE only puts
a new element in front of an existing one if the new element has a higher priority.
We have to check that this means that the elements in the priority queue behind
this existing one must also have elements of a lower priority than the new one,
i.e. that the queue is ordered.

This very informal argument might suffice in this case. But for critical systems
a formal argument is necessary. For such an argument we must first define in
terms of A MESSAGE1, i.e. in terms of a buffer consisting of a queue and a
priority queue, the hidden and undefined function buffered of A MESSAGE0.

The definition we use is

value
buffered : Buffer × T.Message∗ → Bool
buffered((pq, q), l) ≡

(∃ l1 : T.Message∗ • l = l1 ̂ q ∧ pq = sort(l1))

where sort is some definition of a sorting algorithm. The question is which def-
inition to use, and since we are just adding functions to define buffered, which
is never actually implemented, we can use any explicit or implicit function we
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wish, so long as, of course, it correctly defines a sort of its input. What guides our
choice is what will make the proof easiest. If we look at the axiom buffered get
in A MESSAGE0, which is one of the axioms we will have to prove, then it
identifies the output message m1 as one satisfying a particular property making
it the first message that should appear, and this suggests a suitable description
of a sorting algorithm: find the first, put it at the front, and sort the rest:

value
sort : T.Message∗ → T.Message∗

sort(l) ≡
if l = 〈〉 then 〈〉
else

let i = first(l) in
〈l(i)〉 ̂
sort(sublist(l, 1, i − 1) ̂ sublist(l, i + 1, len l))

end
end,

first : T.Message∗ ∼→ Nat
first(l) as i post

i ∈ inds l ∧
(∀ j : Nat •

j ∈ {1 .. i − 1} ⇒ ∼ T.leq(l(i), l(j))) ∧
(∀ j : Nat •

j ∈ {i + 1 .. len l} ⇒ T.leq(l(j), l(i)))
pre l �= 〈〉,

sublist : T.Message∗ × Nat × Nat → T.Message∗

sublist(l, i, j) as l1 post
if i < 1 ∨ j > len l ∨ i > j then l1 = 〈〉
else

len l1 = j − i + 1 ∧
(∀ k : Nat •

k ∈ inds l1 ⇒ l1(k) = l(k + i − 1))
end

sort uses two auxiliary functions first and sublist that are specified implicitly.
This is common when defining functions that we want to use in proof: their
properties are typically more useful than their definitions.

Proving Implementation. We are now in a position to formally prove the
implementation of A MESSAGE0 by the extension of A MESSAGE1 that de-
fines the hidden functions buffered (as described above) and permutation. The
latter was concrete in A MESSAGE0, so we just copy the definition of it and
the auxiliary function count in the extension:

scheme E MESSAGE1 = extend A MESSAGE1 with



102 C. George

class
value

buffered ...,
permutation ...

end

Now we can construct the theory that says that E MESSAGE1 implements
A MESSAGE0:

context: E MESSAGE1, A MESSAGE0
theory MESSAGE01 :
axiom

[ implements ]
� E MESSAGE1 � A MESSAGE0

end

Fig. 12. The theory MESSAGE01

This can be proved using the translator from RSL to PVS [17], together with
the PVS proof tool.

5 Example 2: Lift Control

5.1 Aims of Example

The example is the specification of a simple safety-critical system, and the use of
model checking to gain assurance about the design. We use the recent addition
[27] to the RAISE tools of a model checker to SAL [28].

The lift control described here is developed in much more detail, through to
a model as a set of concurrent processes, in the RAISE method book [5].

The safety-criticality means that we will want to be very careful to state the
safety properties and justify them. Some components (like buttons, doors and
the lift cage) are hardware components; our specification of them will describe
the assumptions about them.

5.2 Model Checking

First we provide a little background about what we want to achieve. We assume
that we have specified a number of functions that can produce a new state of a
system. In the previous example these are the functions put, get, and shift. Now
we want to check that, perhaps provided these functions are applied according to
some rules, or perhaps allowing them to be applied at any time, our system will
evolve in particular ways. For example, we might have a consistency condition
that we want always to be true. Or we might have a condition about something
eventually happening (such as a message eventually being delivered).
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To model check such an applicative RAISE specification we have i general to
do 4 things:

1. We have to make the system finite. Model checking is like exhaustive testing,
but it can only achieve this over a finite set of possible states. So typically
we might have to replace an abstract type Message, say, with a variant type
containing only three messages:

type Message == m1 | m2 | m3

Similarly types that were Int and Nat might be replaced with small ranges.
2. We have to make sure all our functions are explicitly defined.
3. We have to add a transition system to express the rules controlling when our

functions can be applied (often just whenever their preconditions are true).
We will see an example of a transition system in section 5.5.

4. We have to add definitions of the conditions we want to check, which are
stated in the form of assertions in Linear Temporal Logic (LTL). We will see
some examples of LTL assertions in section 5.6.

5.3 Requirements

A lift is required to serve a number of floors. Each floor has doors which must
only be open when the lift is stationary at the floor. Each floor except the top
one has a button to request the lift to stop there and then go up; each floor
except the bottom one has a button to request the lift to stop there and then
go down. The lift also has a button for each floor to request the lift to go to the
floor.

Simplifying Assumptions

– We do not distinguish between lift doors (if any) and floor doors.
– We do not consider the time taken for the lift to move or the doors to

open or close. We will at the detailed level, however, have both “do” and
“acknowledge” events for such actions and assume the hardware will tell us
by the acknowledgements when the actions are completed.

– We do not consider lights on buttons or audible signals that the lift is stop-
ping at a floor. We assume these will be done purely by hardware.

– We will also make some assumptions about the way the lift cage is controlled
that will be described later.

5.4 Initial Formulation

A lift is an example of an asynchronous system, since buttons may be pressed at
any time. In other words there are external stimuli that may arrive at any time,
or may never happen. We have to be careful with such systems to make them
“loosely coupled”. We must not create the situation where a lift is waiting for a
button to be pushed, or a button is waiting for the lift to take notice of it.
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We handle this problem quite naturally in our development style. There will
be a BUTTON module with methods allowing a user to press it and allowing
the lift to see if it has been pressed and to clear it.

As usual we start by considering the objects of the system and whether they
will have dynamic state:

– the cage will presumably change its position, direction and speed
– doors will be open or closed or perhaps in intermediate positions
– buttons will be pressed (and lit) or cleared (and unlit)
– a floor could be dynamically “visited” by a lift or not but this would duplicate

the lift position. So floors seem only to have static attributes, like their
number, whether they are above or below other floors, whether they are the
top or bottom floor.

Certainly it looks as if the lift, the doors and the buttons will have dynamic
state and hence be modelled as RSL objects.

Next comes the question of what attributes are necessary for these. In this
case there is a question of how finely we need to model things. Are doors just
open or closed, or do they also have intermediate opening and closing states?
Do we need to go further and measure their current separation, their velocities
and accelerations? Similar questions apply to the cage’s movements.

The answers to such questions will lie in the detailed requirements (or should
be clarified before we start if not stated there). For manual doors it is almost
certainly enough to just distinguish “closed” (when the door is shut and locked)
from “open” when it does not mater if the door is actually physically open or
shut or somewhere in between. The important thing is that it is not locked shut
and therefore could be opened, so the lift must be stationary at that floor. It
seems that the same distinction can be made about automatic doors: they are
either in a safe closed state or in some other state.

We will make similar assumptions about the cage. We will assume it can be
sufficiently characterised by being halted at a floor (when the doors there may
be open), or in some other state which we will call “moving”. When halted it
will be at a floor; it turns out to be convenient to always associate it with a
floor even when moving, and this will be the (next) floor it is moving towards.
When moving it must have a direction, up or down. Again it turns out to be
convenient to associate a direction with the lift when it is halted, which is the
direction in which it was last moving.

Simplifications for Model Checking. Normally one would make a general
model first, and then decide what changes are necessary to make it capable of
being model checked. But here, since the general model is available already in
[5], we will go straight to a model suitable for model checking.

We obviously need to be specific about the number of floors, and three floors
seems to be the minimum number to allow all the possible movements of a lift:
with only two floors there would be no possibility of moving past a floor without
stopping, for example.
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scheme
TYPES =

class
value

min floor : Nat = 0, max floor : Nat = 2

type
Floor = {| n : Nat • n ∈ {min floor .. max floor} |},
Door state == open | shut,
Button == bup0 | bup1 | bdown1 | bdown2 | blift0 | blift1 | blift2,
Button state == lit | clear,
Direction == up | down,
Movement == halted | moving,
Requirement :: here : Bool after : Bool before : Bool

value
next floor : Direction × Floor

∼→ Floor
next floor(d, f) ≡

if d = up then f + 1 else f − 1 end
pre is next floor(d, f),

is next floor : Direction × Floor → Bool
is next floor(d, f) ≡

if d = up then f < max floor else f > min floor end,

invert : Direction → Direction
invert(d) ≡ if d = up then down else up end

end

Fig. 13. The scheme TYPES

context: TYPES
object T : TYPES

Fig. 14. The object T

This gives us enough to formulate the type module for the system, which we
will call TYPES and instantiate as the global object T:
We have chosen to model the type Floor directly as a subtype of Int. We have
no indication that there will be any attributes of floors other than their numbers
(and we will assume that f +1 is directly above floor f, and f−1 directly below
it).

Since we have decided on three floors we can also be explicit about what
buttons there will be: two “up” buttons (on floors 0 and 1), two “down” buttons
(on floors 1 and 2), and a lift button (inside the lift cage) for each of the three
floors. Buttons are obviously simple two-state machines: they are “lit” (pressed),
or “clear”.
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The type Requirement is used to control the cage by calculating, according
to the button states, the current floor, and the current direction whether the
cage is required to stop here, after (i.e. at some floor further on in the current
direction), or before (i.e. at some floor in the opposite direction). The module
BUTTONS in figures 15 and 16 defines the buttons, operations to press and
clear them, and the calculation of a Requirement.

It would be more natural to define required beyond by

required beyond(f, d, bs) ≡
T.is next floor(d, f) ∧
let f′ = T.next floor(d, f) in

required here(d, f′, bs) ∨ required beyond(d, f′, bs)
end

but our model checker SAL cannot handle recursive functions, so we have un-
rolled the recursion, using the fact that there are only three floors.

The DOORS module, figure 17, is straightforward.
The module for the CAGE, figure 18, is also simple.
We can now construct the lift system type from the cage, doors and buttons:

figure 19.
Now we define a number of functions we need to operate the lift system:

figure 20.
The function move will move the lift from a floor to the next floor in the

given direction. It also has a parameter to say whether the lift is to move from a
halted or moving state. move changes the three components of the lift system:

1. It calls the move function of the CAGE object C, which may change the
direction, movement and floor attributes of the cage.

2. If the lift is moving from halted it calls the close function of the DOORS
object DS, else the doors are unchanged.

3. The buttons are unchanged.

The function halt has a similar structure to move:

1. The cage is halted.
2. The doors at the floor where it is halting (which is the current floor) are

opened.
3. The buttons for the current floor are cleared.

The functions check buttons, is clear, and press are just means to access the
corresponding functions in the BUTTONS object BS.

The heart of the lift specification is the function next which calculates what
to do next in any state, according to the current requirement: figure 21.

To explain the algorithm of next in detail:

– We calculate the current requirement using check buttons. Recall that a
requirement has three Boolean components: here, after, and before.

– If the lift is halted:
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context: T
scheme BUTTONS = hide required here, required beyond in

class
type

Buttons ::
up0 : T.Button state ↔ re up0
up1 : T.Button state ↔ re up1
down1 : T.Button state ↔ re down1
down2 : T.Button state ↔ re down2
lift0 : T.Button state ↔ re lift0
lift1 : T.Button state ↔ re lift1
lift2 : T.Button state ↔ re lift2

value
clear : T.Floor × Buttons → Buttons
clear(f, bs) ≡

case f of
0 → re up0(T.clear, re lift0(T.clear, bs)),
1 → re down1(T.clear, re up1(T.clear, re lift1(T.clear, bs))),
2 → re down2(T.clear, re lift2(T.clear, bs))

end,

press : T.Button × Buttons → Buttons
press(b, bs) ≡

case b of
T.bup0 → re up0(T.lit, bs),
T.bup1 → re up1(T.lit, bs),
T.bdown1 → re down1(T.lit, bs),
T.bdown2 → re down2(T.lit, bs),
T.blift0 → re lift0(T.lit, bs),
T.blift1 → re lift1(T.lit, bs),
T.blift2 → re lift2(T.lit, bs)

end,

is clear : T.Button × Buttons → Bool
is clear(b, bs) ≡

case b of
T.bup0 → up0(bs) = T.clear,
T.bup1 → up1(bs) = T.clear,
T.bdown1 → down1(bs) = T.clear,
T.bdown2 → down2(bs) = T.clear,
T.blift0 → lift0(bs) = T.clear,
T.blift1 → lift1(bs) = T.clear,
T.blift2 → lift2(bs) = T.clear

end,

Fig. 15. The scheme BUTTONS: part 1
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check : T.Direction × T.Floor × Buttons → T.Requirement
check(d, f, bs) ≡

T.mk Requirement(
required here(d, f, bs),
required beyond(d, f, bs),
required beyond(T.invert(d), f, bs)),

required here : T.Direction × T.Floor × Buttons → Bool
required here(d, f, bs) ≡

case f of
0 → lift0(bs) = T.lit ∨ up0(bs) = T.lit,
1 →

lift1(bs) = T.lit ∨
case d of

T.up →
up1(bs) = T.lit ∨
down1(bs) = T.lit ∧ lift2(bs) = T.clear ∧ down2(bs) = T.clear,

T.down →
down1(bs) = T.lit ∨
up1(bs) = T.lit ∧ lift0(bs) = T.clear ∧ up0(bs) = T.clear

end,
2 → lift2(bs) = T.lit ∨ down2(bs) = T.lit

end,

required beyond : T.Direction × T.Floor × Buttons → Bool
required beyond(d, f, bs) ≡

T.is next floor(d, f) ∧
let f′ = T.next floor(d, f) in

required here(d, f′, bs) ∨
T.is next floor(d, f′) ∧
let f′′ = T.next floor(d, f′) in

required here(d, f′′, bs)
end

end
end

Fig. 16. The scheme BUTTONS: part 2

• if after is true then move off in the current direction
• else, if before is true then move off in the opposite direction
• else no change

– else (the lift is moving):
• if here is true then halt
• else, if after and before are both false (so the lift is wanted nowhere)

then halt
• else, if after is true then keep moving in the same direction
• else, if before is true, move in the opposite direction
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context: T
scheme DOORS =

class
type

Doors ::
d0 : T.Door state ↔ re d0
d1 : T.Door state ↔ re d1
d2 : T.Door state ↔ re d2

value
open : T.Floor × Doors → Doors
open(f, ds) ≡

case f of
0 → re d0(T.open, ds),
1 → re d1(T.open, ds),
2 → re d2(T.open, ds)

end,

close : T.Floor × Doors → Doors
close(f, ds) ≡

case f of
0 → re d0(T.shut, ds),
1 → re d1(T.shut, ds),
2 → re d2(T.shut, ds)

end,

door state : T.Floor × Doors → T.Door state
door state(f, ds) ≡

case f of
0 → d0(ds),
1 → d1(ds),
2 → d2(ds)

end
end

Fig. 17. The scheme DOORS

The precondition can next(l) is necessary because move in CAGE is partial,
and can next(l) ensures that the requirement only suggests moving to another
floor when such a floor exists.

Safety. A full hazard analysis of the lift software is beyond the scope of this
chapter, but its conclusions are the following safety requirements:

1. The door at a floor should only be open when the lift is halted at that floor
2. When the lift is halted at a floor the door at that floor should be open
3. The lift should eventually halt at some floor
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context: T
scheme CAGE =

class
type

Cage ::
direction : T.Direction
movement : T.Movement
floor : T.Floor

value
/∗ generators ∗/
move : T.Direction × Cage

∼→ Cage
move(d′, m) ≡

mk Cage(d′, T.moving, T.next floor(d′, floor(m)))
pre T.is next floor(d′, floor(m)),

halt : Cage → Cage
halt(m) ≡ mk Cage(direction(m), T.halted, floor(m))

end

Fig. 18. The scheme CAGE

context: T, CAGE, DOORS, BUTTONS
scheme LIFT =

class
object C : CAGE, DS : DOORS, BS : BUTTONS

type
Lift ::

cage : C.Cage
doors : DS.Doors
buttons : BS.Buttons

Fig. 19. The scheme LIFT: the Lift type

The first of these ensures that people cannot fall into the lift shaft. The second
and third together ensure that people in the lift can eventually get out (regardless
of whether they press any buttons).

The third safety requirement is in fact a simple liveness condition: it says that
eventually something desirable will happen. The first two are “safety” conditions
in the computer science sense: that something bad will never happen. We can
combine them into the function safe: figure 22.

Recall that the equality between Boolean values in RSL is the same as “⇔”.
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value
move : T.Direction × T.Movement × Lift

∼→ Lift
move(d, m, l) ≡

mk Lift(
C.move(d, cage(l)),
if m = T.halted
then DS.close(C.floor(cage(l)), doors(l))
else doors(l) end,
buttons(l))

pre T.is next floor(d, C.floor(cage(l))),

halt : Lift → Lift
halt(l) ≡

mk Lift(
C.halt(cage(l)),
DS.open(C.floor(cage(l)), doors(l)),
BS.clear(C.floor(cage(l)), buttons(l))),

check buttons : Lift → T.Requirement
check buttons(l) ≡

BS.check(
C.direction(cage(l)), C.floor(cage(l)),
buttons(l)),

is clear : T.Button × Lift → Bool
is clear(b, l) ≡ BS.is clear(b, buttons(l)),

press : T.Button × Lift → Lift
press(b, l) ≡

mk Lift(cage(l), doors(l), BS.press(b, buttons(l))),

Fig. 20. The scheme LIFT: basic functions

5.5 Transition System

To design the transition system we need to decide first on the variables we need.
We have a single state variable Lift, so it seems natural to use just that. We will
also need an initial state, and the lift halted with the doors open at floor 0, with
all buttons clear, is a natural choice.

Then we need to decide what the guarded commands for the transitions are.
Clearly one should be the use of next, and the guard will be its precondition.
The other should be press, in fact a choice of any button being pressed. There
doesn’t seem to be a guard needed for press, but if we try it without one we will
find later that our checks that the lift must make progress will fail because the
transition system will allow repeated press transitions with no next transitions.
A simple solution to this is to only allow a press transition when the button
involved is clear. This gives us the transition system in figure 23.
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next : Lift
∼→ Lift

next(l) ≡
let

c = cage(l),
ds = doors(l),
bs = buttons(l),
r = check buttons(l),
d = C.direction(c)

in
case C.movement(c) of

T.halted →
case r of

T.mk Requirement( , true, ) →
move(d, T.halted, l),

T.mk Requirement( , , true) →
move(T.invert(d), T.halted, l),
→ l

end,
T.moving →

case r of
T.mk Requirement(true, , ) → halt(l),
T.mk Requirement( , false, false) → halt(l),
T.mk Requirement( , true, ) →

move(d, T.moving, l),
T.mk Requirement( , , true) →

move(T.invert(d), T.moving, l)
end

end
end

pre can next(l),

can next : Lift → Bool
can next(l) ≡

let c = cage(l), r = check buttons(l) in
(T.after(r) ⇒ T.is next floor(C.direction(c), C.floor(c))) ∧
(T.before(r) ⇒ T.is next floor(T.invert(C.direction(c)), C.floor(c)))

end
end

Fig. 21. The scheme LIFT: the function next and its precondition

The choice “
��� b : T.Button” in the first transition is a choice over all buttons.

5.6 LTL Assertions

Now we need to design the appropriate LTL assertions. One is immediate: the
lift is always safe:

ltl assertion
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safe : Lift → Bool
safe(l) ≡

let c = cage(l), ds = doors(l) in
(∀ f : T.Floor •

(DS.door state(f, ds) = T.open) =
(C.movement(c) = T.halted ∧ C.floor(c) = f))

end

Fig. 22. The scheme LIFT: the function safe

transition system
[ L ]
local

lift : Lift :=
mk Lift(

C.mk Cage(T.up, T.halted, 0),
DS.mk Doors(T.open, T.shut, T.shut),
BS.mk Buttons(

T.clear, T.clear, T.clear, T.clear, T.clear,
T.clear, T.clear))

in
(��� b : T.Button •

[ press ]
is clear(b, lift) −→ lift′ = press(b, lift))

���
[ next ]
can next(lift) −→ lift′ = next(lift)

end

Fig. 23. The scheme LIFT: the transition system

[ safe ] L � G(safe(lift))

This deals with the first two of our safety requirements. Here we use the LTL
operator “G”, which means “globally, in all states”. What about the third, that
the lift eventually halts somewhere. We can write this as:

ltl assertion
[ eventually halts ] L � G(F(C.movement(cage(lift)) = T.halted))

Here we also use the LTL operator “F”, meaning “now or in the future”. Note
the use of “G” as well. “G(F(a))” means that from whatever state we start in,
“a” is true in that state or in some state in the future. “F(a)” would means that
if we start in the initial state “a” is true or will eventually be true.

It would also be interesting to know if the lift goes where it is wanted. For
example, if either of the buttons relevant to floor 0 (bup0 and lift0) are lit, then
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the lift should eventually halt at floor 0 with the doors open. We can write this
as:

ltl assertion
[ arrives0 ]

L � G(BS.up0(buttons(lift)) = T.lit ∨ BS.lift0(buttons(lift)) = T.lit ⇒
F(DS.d0(doors(lift)) = T.open))

Note here that we are assuming the global truth of safe, so that doors open
at floor 0 implies the lift is halted there.

We write similar conditions for the other two floors.
The liveness conditions so far expressed all say that something must happen

eventually. We are also sometimes interested in conditions that can happen, but
not necessarily. All the LTL assertions so far written would be satisfied if the
guard on the first transition were (by a specification error) always false. No
button could be pressed, and the lift would be permanently stationary on floor
0: safe but useless as a lift. We can check that we do not have such a system
by intentionally asserting something we believe to be false, for example that the
cage can never reach floor 2:

ltl assertion
[ moves ] L � G(C.floor(cage(lift)) < 2)

The model checker obligingly produces a counter example, such as that the
button lift2 is pressed and the lift moves from floor 0 to floor 1 and then continues
to floor 2. Now we have some confidence that our lift is actually capable of useful
behaviour, and our assertions are not vacuous.

Another interesting property of our lift is that can next is in fact always true.
We can see this in part by using SAL’s deadlock checker: if there were states
with all buttons lit in which can next were false, the system could deadlock. One
should always check the transition system for deadlock before checking the LTL
assertions, since SAL is only sound if there are no deadlocks.

A complete check that can next is always true is to write and model check
the LTL assertion G(can next(lift)).

Splitting the State. We were lucky that the SAL model checker could check
this system without running out of memory. There is general advice to divide the
state as much as possible into separate variables, especially if some transitions
will then only affect some of the variables. Even though it is not necessary in
this case we will show the technique.

The obvious initial division is to have variables cagev etc. for the cage, doors
and buttons. The initialisation of each of these is obvious.

The first transition, press, only appears to involve buttons. But then we realise
we need to compute a new requirement, as this will change when buttons are
pressed, so we add a new variable req, and we get the guarded command

(
��� b : T.Button •

[ press ]
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BS.is clear(b, buttonsv) −→
buttonsv′ = BS.press(b, buttonsv),
req′ = BS.check(C.direction(cagev), C.floor(cagev), buttonsv′))

Note that the updates cagev′ = cage and doorsv′ = doors are implicitly in-
cluded.

For the other transitions we can split according to the cases in next. For
example, one will be

[ move on ]
C.movement(cagev) = T.halted ∧ T.after(req) −→

cagev′ = C.move(C.direction(cagev), cagev),
doorsv′ = DS.close(C.floor(cagev), doorsv),
req′ = BS.check(C.direction(cagev′), C.floor(cagev′), buttonsv)

We can see that the general idea is that the top level functions move, halt, next
etc. are effectively unfolded into the transition system (and could be removed).
We could go further and split cagev into directionv, movementv and floorv, by
effectively unfolding the functions in CAGE.

Clearly we should do this splitting only when it is necessary. The rewriting
involved increases the chance of making an error and invalidating the results of
the model checking.

5.7 Confidence Condition Checking

The translator to SAL produces a second “CC” translation that enables confi-
dence conditions to be checked. Confidence conditions were introduced in Sec-
tion 2.7.

The basic idea is as follows:

– All types are “lifted” into a type which includes the original type and a
second type Not a value (nav). Whenever a confidence condition violation
is detected, a nav is generated.

– All functions and operators are made strict in that whenever a nav is received
as an argument it is returned as a result. So navs cannot disappear.

– The only LTL assertions generated are
• All constant values are not navs
• All variables are globally not navs

– The system will therefore validate these assertions if no navs are generated,
and otherwise report the violation, giving also the sequence of transitions
that led to it.

– The type Not a value is generated as an enumeration of identifiers which
give an indication of where the error occurred.

For example, if we remove the two occurrences of T.is next floor from re-
quired beyond in the BUTTONS module, and run CC version the second version
of the LIFT, we get the result
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The assertion ’LIFT1_L_cc_check’ is invalid.

and the assertion name indicates we are checking transition system “L” from
module “LIFT1”. We see from the accompanying counter example that req con-
tains
Requirement_nav(Precondition_of_function_T_next_floor_not_satisfied)

so we know that function next floor in module T was called when its precondition
was false.

6 RAISE Tools

Specifications of more than a few lines need to be checked by tools for syntax,
scope and type errors. It is also necessary to have tools for translation to other
languages, and convenient to have pretty printers (for layout, or for translation
to markup languages like LATEX). For RAISE there is a toolset [24] of free, open
source tools that will run on any platform for which C can be compiled. Features
of the tools include:

– syntax, scope, and type checking
– pretty printing
– generation of confidence conditions
– generation of RSL from UML class diagrams
– translation to C++ (for testing and implementation)
– translation to SML (for prototyping and testing, including mutation testing

and test coverage)
– translation to PVS (for proof)
– translation to SAL (for model checking)

7 Summary

In this chapter we have provided an introduction to the RAISE Specification
Language and to the RAISE method. We concentrate on the applicative style
of RAISE, the style most commonly used initially in development. Complete
information can be found in the books on RSL [6] and the method [5], and a
number of case studies in [7]. The RAISE tools [24] are free and open source.

We also described two examples. The first is a simple communication system
that allows the transmission of messages with the possibility of higher priority
messages overtaking others. The example illustrates the use of abstract initial
specification to capture vital properties, and of more detailed concrete specifica-
tion to describe a model having those properties. The second example is a control
system of a lift, and illustrates the use of model checking to gain confidence in
a RAISE model.
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Abstract. In this chapter we will present selected central elements in
the theory of Duration Calculus and we will give examples of applica-
tions. The chapter will cover syntax, semantics and proof system for
the basic logic. Furthermore, results on decidability, undecidability and
model-checking will be presented. A few extensions of the basic calculus
will be described, in particular, Hybrid Duration Calculus and Dura-
tion Calculus with iterations. Furthermore, a case study: the bi-phase
mark protocol, is presented. We will not attempt to be exhaustive in our
coverage of topics; but we will provide references for further study.

Keywords: Real-time systems, metric-time temporal logic, duration cal-
culus, decidability, model-checking, application.

1 Introduction to Duration Calculus

In this chapter we will introduce Durations Calculus (abbreviated DC) [72],
present central elements of the theory, and show examples of applications. The
aim is not to make a comprehensive presentation of the logic; but rather to cover
central parts of the logic in a way that readers afterwards can study research
papers on the topic. We refer to the monograph [70] for a thorough introduction
to DC. The chapter [25] on Duration Calculus in [6] contains an introduction
to DC and states major results without proofs, and addresses approaches to
modelling real-time systems.

1.1 Background

Duration Calculus is an interval logic which was introduced by Zhou Chaochen,
C.A.R. Hoare and A.P. Ravn [72] in 1991, in connection this the ProCoS I
project (Provably Correct Systems), ESPRIT BRA 3104, 1989 – 1991, see [5]. In
that project, formal techniques for the construction of provably correct systems
were studied. Case studies of embedded real-time system, e.g. the Gas Burner
� This work has been partially funded by The Danish Council for Strategic Research

under project MoDES, the Danish National Advanced Technology Foundation un-
der project DaNES, and ARTIST2 (IST-004527).
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case study by E.V. Sørensen, H. Rischel and A.P. Ravn, showed that there were
a collection of properties which could not be expressed using the specification
languages for real-time systems, which were available at that time.

Case studies showed that time intervals are important in models of real-time
systems. Several formalism did support modelling with intervals. But the case
studies also showed the need to express the accumulated present time of a certain
phenomenon, or state, of the systems. This accumulated present time, also called
the duration of the state, could not be expressed by the available formalism.

This led to the introduction of DC [72] as an extension of the Interval Temporal
Logic (ITL) of Halpern, Manna, and Moszkowski [23,46], with the difference that
DC is based on intervals of real numbers, whereas ITL is based on a discrete-time
domain. The reason for basing DC on a continuous-time domain is that many of
the considered applications were in the area of hybrid systems where a discrete
computer component interacts with a continuous environment using sensors and
actuators.

1.2 Motivating Examples

We will introduce the notion of duration using two simple examples as in [70].
The first example comes from the Gas Burner case study [63,58].

A simple gas burner system: Consider a simple model of a gas burner where
we observe three aspects over time. The aspects are:
– the gas is flowing,
– the flame is burning, and
– there is a gas leak,

and they can be modelled by two state variables :

Gas, Flame : Time→ {0, 1} .

We shall use real numbers as the time domain, i.e.

Time =̂ R ,

and the intuition is that Gas(t) = 1 if and only if (abbreviated iff), gas is leaking
at time t. The state variable Flame has a similar interpretation. Furthermore,
the aspect that gas leaks (Leak : Time→ {0, 1}) can be expressed by a Boolean
combination of the two state variables above:

Leak(t) =̂ Gas(t) ∧ ¬Flame(t) .

A Boolean combination of state variables is called a state expression, and it
describes an aspect of a combined state in the system.

A major requirement for a gas burner system is that the amount of gas leaking
should not be too much. Leaking gas cannot be prevented because gas must be
flowing a little while before it can be ignited. For a given time interval [a, b], the
integral ∫ b

a

Leak(t)dt
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is the total time the system is leaking in the interval [a, b], also called the duration
of Leak in [a, b].

We shall use Intv to denote the set of all time intervals:

Intv =̂ { [a, b] ⊆ R| a ≤ b} .

Scheduling of processes sharing a single processor: In connection with
DC, scheduling and shared processors have been studied in several papers, e.g.
[69,67,11]. Consider a shared processor, where n processes {p1, . . . , pn} share a
single processor. To formalize the behavior of this processor, the model must
capture, at least
– which processes are ready to run, and
– which process (if any) is currently running.

There are many ways in which to choose the state variables and the model below
is based on [69]. For each process pi, 1 ≤ i ≤ n, two state variables are used:

Rdyi : Time→ {0, 1}
Runi : Time→ {0, 1} ,

where Rdyi(t) = 1 iff process pi is ready at time t, and Runi(t) = 1 iff process
pi is running at time t.

Since only ready processes may run and at most one process may run at a
given time, the state variables must satisfy the well-formedness constraints:

Runi(t) ⇒ Rdyi(t)
Runi(t) ⇒

∧
j 	=i ¬Runj(t) .

Suppose that each process pi on regular basis or demand should complete a
task, and to do so it needs a certain amount ki ∈ R+ of processing time. If pi

starts on a task at time b and finishes that task at time e, then we have that
∫ e

b

Runi(t)dt = ki .

Hence, the duration of Runi must be ki in the interval [b, e].

1.3 Informal Introduction to Duration Calculus

Duration Calculus is an example of a modal logic [7], where the possible worlds
are time intervals. A consequence of this is that formulas can be considered
truth-valued functions on intervals and properties of intervals can be expressed
without mentioning the intervals explicitly. An example of a formula is

20 ·
∫
Leak ≤ � ,

where � is a special symbol denoting the length b − a of the actual interval, say
[a, b]. The formula is true on the interval [a, b], iff

20
∫ b

a

Leak(t)dt ≤ b− a .
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Thus, the duration of leak should at most be a twentieth of the elapsed time.
In general, atomic formulas are constructed from constants, durations and �

using functions and relation of real arithmetic.
Atomic formulas are combined using connectives and quantifiers of predicate

logic. Furthermore, special interval modalities can be used. An example is the
chop modality (written “�”) from ITL: The formula φ �ψ (reads “φ chop ψ”)
holds on [b, e], iff there exists m, where b ≤ m ≤ e, such that φ holds on [b, m]
and ψ holds on [m, e]:

φ �ψ
︷ ︸︸ ︷
b m e
︸ ︷︷ ︸

φ
︸ ︷︷ ︸

ψ
.

The chop modality is an example of a binary modality. Other modalities can
be derived from chop using propositional logic, for example, the unary (“for some
subinterval”) modality �, and the dual modality � (“for all subintervals”):

�φ =̂ true �(φ �true) reads: “for some subinterval: φ”
�φ =̂ ¬�¬φ reads: “for all subintervals: φ”.

Furthermore, we shall use the abbreviations:



S�� =̂
∫
S = � ∧ � > 0



 �� =̂ � = 0 .

The formula 

S�� holds for non-point intervals where the state expression S holds
(has value 1) throughout the interval except for isolated points, and 

 �� holds
for point intervals.

Using these abbreviations on can express a decision for design of gas burners

�(

Leak�� ⇒ � ≤ 1) ,

where gas is leaking for at most one time unit in every subinterval.

2 Syntax, Semantics and Proof System

This section will cover syntax, semantics and a proof system for Duration Cal-
culus. The presentation is based on [70,25], but here we will be far less detailed.

2.1 Syntax

Duration Calculus was introduced as an extension of predicate modal logic,
where the first-order part is based on real arithmetic. The first-order variables
are called global variables, and we assume that an infinite set GVar of global
variables ranged over by x, y, z, . . . is given. In general, we assume that there is
an infinite set FSymb of global function symbols fn, gm, . . . equipped with arities
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n, m ≥ 0. If fn has arity n = 0 then f is called a constant. The meaning of a
global function symbol fn, n > 0, will be an n-ary function, fn : R

n → R. The
meaning of a constant f0 is a real number f0 ∈ R.

Similarly, we assume we that there is an infinite set RSymb of global relation
symbols Gn, Hm, . . . equipped with arities n, m ≥ 0. The meaning of a global
relation symbol Gn, n > 0, will be an n-ary truth-valued function, Gn : R

n →
{tt,ff}. The constants true and false are the only two global relation symbols
with arity 0, and the meaning is the usual one: true = tt and false = ff.

When function symbols, e.g. + and −, and relation symbols, e.g. ≥ and =,
occur in formulas they appear in the usual notation and are assumed to have
their standard meaning.

We have the following syntactical categories for the time-dependent part:

– An infinite set SVar of state variables P, Q, R, . . .. A state variable denotes
a Boolean-valued function of time.

– A special symbol � denoting the interval length.
– An infinite set PLetter of temporal propositional letters X, Y, . . .. A temporal

propositional letter denotes a truth-valued interval function.

The syntactical categories for state expressions (S, Si ∈ SExp), terms (θ, θi ∈
Term), and formulas (φ, ψ ∈ Formula), are defined by the abstract syntax:

S ::= 0 | 1 | P | ¬S1 | S1 ∨ S2

θ ::= x | � |
∫
S | fn(θ1, . . . , θn)

φ ::= X | Gn(θ1, . . . , θn) | ¬φ | φ ∨ ψ | φ �ψ | (∃x)φ .

In state expressions and formulas we shall use derived propositional connec-
tives for conjunction ∧, implication ⇒, biimplication ⇔, and standard abbrevi-
ations concerning quantifiers will be used.

Moreover, whenever ¬, (∃x), (∀x), � and � occur in formulas they have higher
precedence than the binary connectives and the binary modalities � and �

(defined below). The formula (�φ) ⇒ (((∀x)(¬ψ)) �ϕ), for example, can be
written as �φ⇒ ((∀x)¬ψ �ϕ). Furthermore, we will use standard abbreviation
in connection with quantification, for example,

∃x > θ.φ =̂ (∃x)(x > θ ∧ φ) .

2.2 Semantics

In the semantics we shall shall assume fixed, standard interpretations of function
and relation symbols of real arithmetic. The meaning of global variables is given
by a value assignment, which is a function

V : GVar → R ,
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associating a real number with each global variable. Let Val be the set of all
value assignments:

Val =̂ GVar → R .

Two value assignments V ,V ′ ∈ Val are called x-equivalent if they agree on all
global variables except x, i.e. if V(y) = V ′(y) for every global variable y �= x.

An interpretation for state variables and propositional letters is a function:

I :

⎛

⎝
SVar
∪

PLetters

⎞

⎠→

⎛

⎝
Time→ {0,1}

∪
Intv→ {tt,ff}

⎞

⎠ ,

where

– I(P ) : Time→ {0,1}, for every state variable P ,
– I(P ) has a finite number of discontinuity points in every interval, and
– I(X) : Intv → {tt,ff}, for every propositional letter X .

Thus, each function I(P ) has the property of finite variability, and, hence,
I(P ) is integrable in every interval.

The semantics of a state expression S, given an interpretation I, is a function:

I[[S]] : Time→ {0, 1} ,

defined inductively on the structure of state expressions by:

I[[0]](t) = 0
I[[1]](t) = 1
I[[P ]](t) = I(P )(t)

I[[(¬S)]](t) =
{

0 if I[[S]](t) = 1
1 if I[[S]](t) = 0

I[[(S1 ∨ S2)]](t) =
{

1 if I[[S1]](t) = 1 or I[[S2]](t) = 1
0 otherwise.

The function I[[S]] has a finite number of discontinuity points in any interval
and is thus integrable in every interval. In the following we will use the abbrevi-
ations: SI =̂ I[[S]] and XI =̂ I(X).

The semantics of a term θ in an interpretation I is a function:

I[[θ]] : (Val × Intv)→ R ,

defined inductively on the structure of terms by:

I[[x]](V , [b, e]) = V(x)

I[[
∫
S]][b, e] =

∫ e

b SI(t)dt

I[[�]] (V , [b, e]) = e− b

I[[fn(θ1, . . . , θn)]] (V , [b, e]) = fn(c1, . . . , cn)
where ci = I[[θi]] (V , [b, e]), for 1 ≤ i ≤ n.
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The semantics of a formula φ in an interpretation I is a function:

I[[φ]] : (Val × Intv)→ {tt,ff} ,

defined inductively on the structure of formulas below, where the following ab-
breviations will be used:

I,V , [b, e] |= φ =̂ I[[φ]] (V , [b, e]) = tt
I,V , [b, e] �|= φ =̂ I[[φ]] (V , [b, e]) = ff .

The definition of I[[φ]] is:

– I,V , [b, e] |= X iff XI([b, e]) = tt.

– I,V , [b, e] |= Gn(θ1, . . . , θn) iff Gn(c1, . . . , cn) = tt,
where ci = I[[θi]](V , [b, e]) for 1 ≤ i ≤ n.

– I,V , [b, e] |= ¬φ iff I,V , [b, e] �|= φ.

– I,V , [b, e] |= φ ∨ ψ iff I,V , [b, e] |= φ or I,V , [b, e] |= ψ.

– I,V , [b, e] |= φ �ψ iff I,V , [b, m] |= φ and I,V , [m, e] |= ψ,
for some m ∈ [b, e].

– I,V , [b, e] |= (∃x)φ iff I,V ′, [b, e] |= φ, for some V ′ x-equivalent to V .

A formula φ is valid, written |= φ, iff I,V , [b, e] |= φ, for every interpretation I,
value assignment V , and interval [b, e]. Moreover, a formula ψ is satisfiable iff
I,V , [b, e] |= ψ, for some interpretation I, value assignment V , and interval [b, e].

Examples: The validity of the following two formulas relies on the finite vari-
ability of states (Why?).



 �� ∨ (true �

S��) ∨ (true �

¬S��) (1)



 �� ∨ (

S���true) ∨ (

¬S���true) . (2)

The next three formulas express basic properties of durations:
∫
S +

∫
¬S = � ,

∫
S ≤ � and

∫
S1 ≥

∫
S2, if S2 ⇒ S1,

and the following formulas are valid formulas about 

S��:



S�� ⇔ (

S���

S��) and (

S1�� ∧ 

S2��) ⇔ 

S1 ∧ S2�� ,

where the first formula holds because we have a continuous time domain, and
the last formula reflects the structure of state expressions.

2.3 Proof System

The proof system has two parts: The first part is a based on the proof system
S′ for IL presented and shown complete wrt. abstract value and time domains in
[13]. The second part is proof system for state durations, which is shown relative
complete wrt. IL in [27].
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Proof system for interval logic: The proof system S′ is a Hilbert style proof
system, where we shall use the following notions. Free (global) variables as known
from predicate logic. Furthermore, a term is called flexible if � or a duration

∫
S

occur in the terms, and a formula is called flexible if �, a duration
∫
S or a

propositional letter occur in the formula. A term or formula which is not flexible
is also called rigid. Note that a rigid formula may contain the chop modality.

Furthermore, we shall use the dual-chop modality φ � ψ defined by:

φ � φ =̂ ¬((¬φ) �(¬ψ)) reads: “φ dual-chop ψ” .

The reading of φ � ψ is as follows: φ � ψ holds on [b, e] iff, for all m ∈ [b, e]: φ
holds on [b, m] or ψ holds on [m, e].

The axioms and rules below are basically those of [13], except that we use the
abbreviation for the dual modality of chop. This has the advantage that certain
axioms and rules can be expressed more succinctly (avoiding double negation),
and some proof have a more compact form.

The axioms of are:
A0 � ≥ 0 .

A1 ((φ �ψ) ∧ (¬φ � ϕ)) ⇒ (φ �(ψ ∧ ϕ)) .
((φ �ψ) ∧ (ϕ � ¬ψ)) ⇒ ((φ ∧ ϕ) �ψ) .

A2 ((φ �ψ) �ϕ) ⇔ (φ �(ψ �ϕ)) .

R (φ �ψ)⇒ φ if φ is a rigid formula.
(φ �ψ)⇒ ψ if ψ is a rigid formula.

E (∃x.φ �ψ)⇒ ∃x.(φ �ψ) if x is not free in ψ.
(φ �∃x.ψ)⇒ ∃x.(φ �ψ) if x is not free in φ.

L1 ((� = x) �φ)⇒ ((� �= x) � φ) .
(φ �(� = x))⇒ (φ � (� �= x)) .

L2 (x ≥ 0 ∧ y ≥ 0)⇒ ((� = x + y)⇔ ((� = x) �(� = y))) .

L3
φ⇒ (φ �(� = 0))
φ⇒ ((� = 0) �φ) .

The inference rules of are:
MP if φ and φ ⇒ ψ then ψ. (modus ponens)

G if φ then (∀x)φ. (generalisation)

N if φ then φ � false.
if φ then false � φ. (necessity)

M if φ ⇒ ψ then (φ �ϕ) ⇒ (ψ �ϕ).
if φ ⇒ ψ then (ϕ �φ) ⇒ (ϕ �ψ). (monotonicity)
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Predicate logic: The proof system also contains axioms of first order predicate
logic with equality. Extra care must be taken when universally quantified for-
mulas are instantiated and when an existential quantifier is introduced as shown
below.

A term θ is called free for x in φ if x does not occur freely in φ within a scope
of ∃y or ∀y, where y is any variable occurring in θ. Furthermore, a formula is
called chop free if � does not occur in the formula.

Two axiom schemes for quantification are:

Q1 ∀x.φ(x) ⇒ φ(θ)
Q2 φ(θ) ⇒ ∃x.φ(x)

(
if θ is free for x in φ(x), and
either θ is rigid or φ(x) is chop free

)
.

The proof system has to contain axioms for first order logic of real arithmetic.
We will not be explicit about other axioms and rules of real arithmetic. We just
write PL in proofs, when we exploit properties of real arithmetic.

Proof system for state durations: The axioms and rules for DC must reflect
the structure of state expressions. The axioms are:

DCA1
∫
0 = 0 .

DCA2
∫
1 = � .

DCA3
∫
S ≥ 0 .

DCA4
∫
S1 +

∫
S2 =

∫
(S1 ∨ S2) +

∫
(S1 ∧ S2) .

DCA5 ((
∫
S = x) �(

∫
S = y))⇒ (

∫
S = x + y) .

DCA6
∫
S1 =

∫
S2, provided S1 ⇔ S2 holds in propositional logic.

We also need rules to formalize the finite variability of state expressions.
To this end, the notion state induction is introduced. The main idea of state
induction is the following. To prove that φ holds for every interval, it suffices to
establish:

– The base case: φ holds for point intervals.
– The inductive step: it is established that φ holds for an interval of the form

X �(

S�� ∨ 

¬S��), under the assumption that X ⇒ φ. Hence, from a arbi-
trary interval X on which φ holds:

φ
︷ ︸︸ ︷

X

,

we can conclude that φ holds for a larger interval, where X is extended by
a section throughout which either S or ¬S hold:

φ
︷ ︸︸ ︷

X 

S�� ∨ 

¬S�� .



128 M.R. Hansen and D. Van Hung

These two steps suffices since every interval can be covered by a finite sequence
of sections for which either 

S�� or 

¬S�� holds.

Let H(X) be a formula containing the propositional letter X and let S1, . . . , Sn

be any finite collection of state expressions which are complete in the sense that

(
n∨

i=1

Si) ⇔ 1 .

For a complete collection of state expressions: S1, . . . , Sn, there are two induction
rules:

IR1 If H(

 ��) and H(X)⇒ H(X ∨
∨n

i=1(X
�

Si��))

then H(true)

and
IR2 If H(

 ��) and H(X)⇒ H(X ∨

∨n
i=1(

Si���X))

then H(true) ,

where H(φ) denotes the formula obtained from H(X) by replacing every occur-
rence of X in H with φ.

In these rules H(

 ��) is called the base case, H(X) is called the induction
hypothesis, and X is called the induction letter.

Deduction and proof: A deduction of φ from a set of formulas Γ is a sequence
of formulas

φ1

...
φn ,

where φn is φ, and each φi is either a member of Γ , an instance of one of the
above axiom schemes or obtained by applying one of the above inference rules to
previous members of the sequence. We write Γ � φ to denote that there exists a
deduction of φ from Γ , and we write Γ, φ � ψ for (Γ ∪ {φ}) � ψ. When Γ = ∅,
the deduction is called a proof of φ. In this case we call φ a theorem � φ.

As an example, we derive the monotonicity rules for the dual of chop:

IL1
φ ⇒ ψ � (φ � ϕ) ⇒ (ψ � ϕ)
φ ⇒ ψ � (ϕ � φ) ⇒ (ϕ � ψ) .

Proof. Here is a deduction establishing the first part:

1. φ ⇒ ψ assumption
2. ¬ψ ⇒ ¬φ 1., PL
3. ¬(ψ � ϕ)⇒ ¬ψ �¬ϕ def. � , PL
4. (¬ψ �¬ϕ)⇒ (¬φ �¬ϕ) 2., M
5. ¬(ψ � ϕ)⇒ (¬φ �¬ϕ) 4., def. � , PL
6. (φ � ϕ)⇒ (ψ � ϕ) 5., def. � , PL
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The following two deduction theorems can be used to simplify proofs.

Theorem 1. [28] If a deduction

Γ, φ � ψ

involves
– no application of the generalization rule G in which the quantified variable

is free in φ, and
– no application of the induction rules, IR1 and IR2, in which the induction

letter occurs in φ,
then

Γ � �φ⇒ ψ .

Theorem 2. [70] Suppose that {S1, . . . , Sn} is a complete set of state expres-
sions. Then

Γ � H(

 ��) and
Γ, H(X) � H(X ∨

∨n
i=1(X

�

Si��))

}
implies Γ � H(true) ,

and
Γ � H(

 ��) and
Γ, H(X) � H(X ∨

∨n
i=1(

Si���X))

}
implies Γ � H(true) ,

provided the deductions from Γ, H(X) involve no application of the induction
rules, where the induction letter occurs in H(X).

Consider the formulas:

DC1 

 �� ∨ (true �

S��) ∨ (true �

¬S��)

DC2 

 �� ∨ (

S���true) ∨ (

¬S���true) .

The proof of DC1, for example, is by induction using H(X) =̂ X ⇒ DC1 as
induction hypothesis and {S,¬S} as a complete collection of state expressions.
Using Theorem 2 (and propositional logic), the proof is completed by establishing
the base case H(

 ��), i.e. 

 �� ⇒ DC1, which is trivial, and three easy deductions:
– (X ⇒ DC1) � X ⇒ DC1,
– (X ⇒ DC1) � (X �

S��)⇒ DC1, and
– (X ⇒ DC1) � (X �

¬S��)⇒ DC1.

An essential property of a proof system is that every theorem is valid.

Theorem 3. (Soundness)

� φ implies |= φ .

The soundness of axioms and inference rules of IL are treated in [13] and axioms
for DC are simple. The soundness of IR1 and IR2 relies on the finite variability
of states and we refer to [70] for a proof.
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Another important property of a proof system is that it is complete, i.e. every
valid formula is provable. As DC extends real number arithmetic, and, further-
more, natural number reasoning are used in several case studies, the completeness
issue is a complex matter.

We will not go into details concerning completeness issues for the arithmetical
parts, but mention a few classical results. In 1951, Tarski [64] proved a complete-
ness and decidability results for a theory of reals, where atomic formulas involve
equality (=) and ordering relations (<,≤, >,≥) and terms are constructed from
rational constants and (global) variables using operations for addition, subtrac-
tion, negation, and multiplication. For natural number theory, Presburger gave
in 1930 a decision algorithm for linear arithmetic (excluding multiplication),
while Gödel, in 1931, established his famous incompleteness theorem for a the-
ory having addition, subtraction, negation, and multiplication as operations.
Concerning theorem proving with real numbers, we refer to [29].

For DC, there is a relative completeness result with respect to ITL [27,70],
which shows that there is a deduction for every valid formula, from the collection
of valid ITL formulas. The completeness of IL, with abstract value and time
domains, is proved in [12], and in [21] there is a completeness result for DC with
respect to abstract value and time domains.

3 Basic Decidability and Undecidability Results

It is a very tedious and error-prone task to write proof by hand using a formal
system. DC proofs are no exception. So there is a natural desire to get tool
support. Interval logics are, however, typically very expressive logics, which often
are undecidable. For example, the propositional interval logic HS with unary
modalities begins, ends and their inverses, by Halpern and Shoham [24], is shown
highly undecidable for a collection of classes of interval models. In this section
we will review the first results on decidable as well as undecidable fragments of
DC [71], to show limits of what we can hope for. In Sect. 5 and Sect. 6 we will
provide some extensions to these results.

3.1 A Basic Decidability Results

Consider first a simple subset of DC called Restricted Duration Calculus (RDC ).
The formulas of RDC are constructed by the following abstract syntax:

S ::= 0 | 1 | P | ¬S1 | S1 ∨ S2

φ ::= 

S�� | ¬φ | φ ∨ ψ | φ �ψ .

Decidability results were established both for discrete and continuous time
interpretations. In a discrete time interpretation state variables are allowed to
change value at natural number time points only. Furthermore, only intervals
having natural number end points are considered, and, at last, chop points must
be natural numbers.
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Theorem 4. [71] The satisfiability problem for RDC is decidable for discrete
and continuous time.

The theorem is proved by reducing the satisfiability problem for RDC to the
emptiness problem for regular languages, which is decidable. The main idea of
this reduction is that a letter in the alphabet describes a section of an interpre-
tation. A letter is a conjunction of state variables or negation of state variables.


S�� is translated L+, where L is the set of letters ”for which S is true”. Disjunc-
tion, negation and chop correspond to union, complement and concatenation,
respectively, of regular languages.

The complexity of the satisfiability problem for RDC is non-elementary. Peter
Sestoft established this result for discrete time and for continuous time the result
is shown in [52].

In the tool DCVALID [50] an extension of discrete-time RDC with quantifica-
tion of state variables is translated into Monadic Second-Order Logic over finite
strings, which is a slight variant of the Weak Monadic Second-Order theory of
one successor (WS1S) [10,14]. This second-order theory is decidable and used
for instance in the MONA system [40].

There are certainly more results than those mentioned above. For example, de-
cidable subsets are also considered in [26,42,49,17,59,36,16]. References [61,51]
concern implementation of tools to check the validity of a subclass of Dura-
tion Calculus and its higher-order version. In [18], there is a bounded model
construction for discrete-time Duration Calculus, which is shown NP-complete.
Furthermore, in [15], a robust interpretation for a subset of Duration Calculus
is considered, and a semi-decision result is obtained. Model-checking formulas
wrt. automata based implementations is considered in [39,73,43,44,9,38,16], and
automated proof assistance is considered in [62,60,45,56,55,54].

3.2 Basic Undecidability Results

From a point of view of tool support, a disappointing fact is that seemingly
small extensions to RDC are shown undecidable in [71] by reducing the halt-
ing problem of two-counter machines to the satisfiability problem. The subsets
considered were:

– RDC 1, which is defined by:

φ ::= � = 1 | 

S�� | ¬φ | φ ∨ ψ | φ �ψ .

– RDC 2, which is defined by:

φ ::=
∫
S1 =

∫
S2 | ¬φ | φ ∨ ψ | φ �ψ .

– RDC 3, which is defined by:

φ ::= � = x | 

S�� | ¬φ | φ ∨ ψ | φ �ψ | ∀x.φ .

The satisfiability problem for RDC 1 is decidable for a discrete time interpreta-
tion as the formula � = 1 is expressible in RDC as 

1�� ∧ ¬(

1���

1��). But for
a continuous time domain, the satisfiability problem for RDC 1 is undecidable.
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Theorem 5. [71] The satisfiability problem for RDC 1 is undecidable for con-
tinuous time.

The main idea behind the proof of this theorem is to reduce the (undecidable)
halting problem for 2-counter machines to the satisfiability problem of RDC 1. In
this case, a value m of a counter is represented by a state variable C which has m
sections of the form 

C�� separated by sections of the form 

¬C��. The continuous
time domain and the formula � = 1 are used to represent any counter value on a
unit interval. A full configuration of a 2-counter machine can be represented on
an interval of length 4 (two units for the counters, one for the current state, and
one is used as a separator). Furthermore, the formulas can express transitions
of the machine from one configuration to the next.

Theorem 6. [71] The satisfiability problems for RDC 2 and RDC 3 are unde-
cidable for discrete and continuous time.

The main idea behind the encoding of a 2-counter machine in RDC 2 is to have
two state variables C+ and C− for a counter c, so that the value of c is

∫
C+−

∫
C−

interpreted over the interval representing the computation up to the current
state. The value of c is increased (decreased) by one by letting 

C+�� (

C−��)
hold over the next section. To simulate the 2-counter machine we just need
the formula

∫
C+ =

∫
C− to test whether c’s value is 0, but it is not necessary

to compute the actual value of the counter. The sections representing counter
operations should have equal length and RDC 2 is strong enough to express that.
The proof idea works for discrete as well as a continuous time domain. We will
not go into details about RDC 3, as this undecidability result just shows the
well-known power of first-order logic. For further details, we refer to [71,70].

The non-elementary complexity bound of the satisfiability problem for RDC
shows that very ”heavy” tools are necessary to handle this seemingly simple
subset. Furthermore, the simple extension with � = 1 (to RDC 2) leads to un-
decidability (wrt. continuus time), and so does the extension with

∫
S1 =

∫
S2

leading to RDC 3. Hence, it is not easy to find decidable extensions to RDC
where you can express precise time bounds like � = 1, or make assertion about
the duration of states. Before we extend the decidability results, we first show
that RDC can be simplified [8].

3.3 RDC ∗: A Simplification of RDC

The simplified fragment, called RDC ∗, has the following abstract syntax:

φ ::= P | π | ¬φ | φ ∨ ψ | φ � ψ ,

where P is a state variable. In RDC ∗, π stands for point interval and P cor-
responds to the formula 

P �� of RDC . The simplification is that RDC ∗ has no
syntactical category for state expressions.
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The interesting point is that RDC ∗ has the same expressive power as RDC,
as shown by the translation ·∗ from the formulas of RDC into formulas of RDC ∗:



0��∗ = ¬T 

1��∗ = ¬π


P ��∗ = P 

¬S��∗ = ¬π ∧�¬(

S��∗)


S1 ∨ S2��∗ = ¬π ∧�(¬π → ♦(

S1��∗ ∨ 

S2��∗)) (¬φ)∗ = ¬(φ∗)
(φ ∨ ψ)∗ = φ∗ ∨ ψ∗ (φ � ψ)∗ = φ∗ � ψ∗ .

This translation shows that Boolean connectives in state expressions “behave like
modalities. The correctness of the translation is stated in the following lemma,
which says that truth is preserved by the translation ·∗. The lemma also estab-
lishes that the simpler language RDC∗ has the same expressive power as RDC .

Lemma 1. [8] For all RDC formulas φ, interpretations I, and intervals [t, u]:

I, [t, u] |= φ∗ iff I, [t, u] |= φ.

Discrete time: Lemma 1 holds for discrete time as well. Even in a seemingly
simple fragment, some real-time properties are expressible. Observe first that
the formula � = 1 can be represented in RDC as follows:

� = 1 =̂ 

1�� ∧ ¬(

1��� 

1��) .

Simple notions of durations are also expressible in RDC and hence also in RDC ∗.
For example, the formula

∫
S = 1 is expressed as

(

 �� ∨ 

¬S��) �(

S�� ∧ � = 1) �(

 �� ∨ 

¬S��) .

The above two formulas are not expressible in continuous-time RDC (see [71,70]).
For further discussion about the expressibility of RDC we refer to [70].

4 Duration Calculus with Iterations

In this section, we present an extension of Duration Calculus, called DC∗, with
the modality iteration, also known as Kleene star. Iteration was introduced to DC
to facilitate the reasoning about repetitive behaviour. Iteration is particularly
important for the description of the repetitive behaviour of timed automata in
DC. In [37] we developed a method for designing real-time hybrid systems from
specifications written using a subset of DC∗ which consists of the so-called simple
DC∗ formulas. One can reason about the correctness of designs in terms of the
semantics of DC∗. However, it would be more practical and interesting to be
able to prove correctness syntactically. This requires the development of a proof
system for DC∗.

Let us return to the Gas Burner example presented earlier. The DC formula

S � �(� > 60⇒ (20
∫

Leak ≤ �)) (3)

specifies that a gas burner can be in the Leak state for no more than one-twentieth
of the time in any time interval that is at least 1 minute long. Consider the gas
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Leak Nonleak
[0,1]

[30,~)

Fig. 1. A Simple Gas Burner Design

burner design described by the real-time automaton shown in Fig. 1. We assume
that Leak is the initial state for the sake of simplicity. In this design Leak becomes
detected within 1 second and leaks are separated by at least 30 seconds. This
can be specified by the DC∗ formula

D � ((

Leak�� ∧ � ≤ 1)�(

Nonleak�� ∧ � ≥ 30))∗ . (4)

To show the correctness of the design, we have to prove D ⇒ S. This can be
done by means of our axioms about iteration given in this section.

In this section we study the deductive power of three groups of axioms and a
rule for iteration in DC which we add to the proof system presented in Sect. 2.

In the sequel, the set of the variables which have free occurrences in a formula
ϕ is denoted by FV (ϕ). For sets of formulas Γ , FV (Γ ) is defined as

⋃
ϕ∈Γ

FV (ϕ).

The state variables occurring freely a formula ϕ are assumed to be in FV (ϕ) too.

4.1 Iteration Formulas

DC is extended by iteration by allowing formulas of the form ϕ∗. The semantics
of formulas of this form is defined as:
I,V , [b, e] |= ϕ∗ iff either b = e, or there exist m0, m1, . . . , mm such that

b = m0 < m1 < . . . < mn = e and
I,V , [mi, mi+1] |= ϕ for i = 0, . . . , n− 1.

Iteration ∗ binds more tightly than � and the propositional connectives.

4.2 Axioms and a Rule About Iteration in DC

From the definition of the semantics of iteration, it is obvious that the following
two axioms are needed for the DC proof system:

(DC∗1) � = 0⇒ ϕ∗

(DC∗2) (ϕ∗ �ϕ)⇒ ϕ∗

However, DC∗1 and DC∗2 are not enough to characterise the definition of
iteration. In the following, we develop three axioms more named DC∗3, DC∗4
and DC∗5, and show that combining any of them with DC∗1 and DC∗2 will
completely characterise the meanings of iteration.

(DC∗3) ((ϕ∗ ∧ ψ)�true)⇒ ((ψ ∧ � = 0)�true) ∨ ((((ϕ∗ ∧ ¬ψ)�ϕ) ∧ ψ)�true)
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To understand the meaning of DC∗3, assume that some non-point initial
subinterval [b, e′] of the reference interval [b, e] satisfies ψ and ϕ∗, and I,V , [b, b] �|=
ψ. By the definition of the semantics of iteration, for some m0, . . . , mn such
that b = m0 < m1 < . . . < mn = e′ it holds that I,V , [mi, mi+1] |= ϕ. Let
j ≤ n be the least such that I,V , [b, mj ] |= ψ. From our assumption, j exists
and j > 0. Hence, I,V , [b, mj−1] |= ϕ∗ ∧ ¬ψ, and consequently, I,V , [b, mj] |=
((ϕ∗ ∧ ¬ψ)�ϕ) ∧ ψ.

(DC∗4) �(� = 0 ∨ (ψ�ϕ)⇒ ψ)⇒ (ϕ∗ ⇒ ψ),

DC∗4 is an expression of the fact that Ĩ(ϕ∗) is the least set of time intervals
X ⊆ I(T ) which satisfies the inclusion

Ĩ(� = 0) ∪ Ĩ(ϕ)�X ⊆ X.

For simplicity, let us denote

f(ϕ, Q) � ¬(((true�

Q��) ∨ � = 0)�(

¬Q�� ∧ ¬ϕ)�(

Q���true) ∨ � = 0).

This formula f(ϕ, Q) means that every maximal non-trivial subinterval of the
reference interval which satisfies 

¬Q�� satisfies ϕ. Let

g(ϕ, P ) � f(ϕ, P ) ∧ f(ϕ,¬P ).

This formula means that all maximal non-trivial subintervals of the reference
interval [b, e] which satisfy either 

P �� or 

¬P �� satisfy ϕ. Because of the finite
variability of state variables in DC, these intervals form a finite partition of [b, e].
Therefore, if the model (I,V , [b, e]) satisfies g(ϕ, P ), then it also satisfies ϕ∗. This
observation is captured by the rule

(DC∗5)
Γ � (α�g(ϕ, P )�β)⇒ ψ

Γ � (α�ϕ∗�β)⇒ ψ
, where P �∈ FV (Γ ∪ {ϕ, ψ, α, β}).

If we substitute � = 0 for both α and β in the rule, we get a simpler version
of this rule:

Γ � g(ϕ, P )⇒ ψ

Γ � ϕ∗ ⇒ ψ
, where P �∈ FV (Γ ∪ {ϕ, ψ})

As mentioned above, if a reference interval [b, e] satisfies g(ϕ, P ), then the time
points at which P changes its value inside ϕ partition it into subintervals which
satisfy ϕ, and therefore [b, e] itself satisfies ϕ∗. Given a concrete interpretation
of P , the points at which P changes its value define a concrete finite partition
of [b, e], whereas for [b, e] to satisfy ϕ∗ we just need the existence of such a
partition. Therefore, the side condition P �∈ FV (Γ ∪ {ϕ, ψ}) is needed to make
the existence of such a partition independent from the interpretation of the
variables that contribute to the truth value of formulas in Γ ∪ {ϕ, ψ}.

Note that the scope of the soundness of DC∗1−DC∗4 is, in fact, the extension
ITL∗ of ITL by iteration, because these axioms involve no DC-specific constructs.

It has been shown in [19] that with the additional axioms and rule DC∗1, DC∗2
and DC∗5 for iteration, the proof system of DC is complete in the abstract-time
domain for DC∗.
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4.3 Interderivability Between DC∗3, DC∗4 and DC∗5

The proof rule DC∗5 is implicitly related to the state variable binding existential
quantifier in DC∗. The key ingredient in this rule is the formula g(ϕ, P ). The
proof that DC∗5 is derivable from DC∗1, DC∗2 and DC∗4 involved the proof
system for the higher order Duration Calculus which is not presented in this
chapter. Readers are referred to [19] for the proof details.

The relationship between the axioms introduced for iteration is formulated as
follows.

Proposition 1. [19]

1. DC∗4 is provable in the extension of the proof system for DC by just DC∗3.
2. DC∗3 and DC∗4 is provable in the extension of the proof system for DC by

the axioms DC∗1, DC∗2 and DC∗5.

4.4 Examples of the Use of DC∗1–DC∗5

In this subsection we give derivations for a couple of DC∗ theorems of general in-
terest and use one of them in a proof about our introductory gas-burner example
in order to give some such illustration with a practical flavour.

Here are two derivations of the monotonicity of iteration. One of them involves
DC∗3:

α∗ ∧ ¬β∗ ⇒ ((¬β∗ ∧ � = 0)�true) ∨ ((((α∗ ∧ β∗)�α) ∧ ¬β∗)�true) by DC∗3
⇒ ((((α∗ ∧ β∗)�α) ∧ ¬β∗)�true) by DC∗1
⇒ (¬β∗ ∧ β∗)�true by DC∗

2

and α⇒ β
⇒ false

The other involves the proof rules ω and DC∗5:

1
(


P ��∨


¬P ��

)k

⇒
(

g(α, P )⇒
(

�(ϕ⇒ β)⇒
∨

l≤k

βl

))
k < ω, DC

2 βm ⇒ β∗ m < ω, DC∗1, DC∗2, DC
3 (

P �� ∨ 

¬P ��)k ⇒ (g(α, P )⇒ (�(ϕ⇒ β)⇒ β∗)) k < ω, 1, 2, DC
4 g(α, P )⇒ (�(ϕ⇒ β)⇒ β∗) 3, ω
5 α∗ ⇒ (�(ϕ⇒ β)⇒ β∗) 4, DC∗5
6 �(ϕ⇒ β)⇒ (α∗ ⇒ β∗)

Here follows another useful DC∗ theorem:

�DC∗ �(ϕ⇒ ¬(true�¬α) ∧ ¬(¬β�true))∧
�(� = 0⇒ α ∧ β) ∧ �(β ⇒ ¬(true�¬γ))⇒
⇒ ϕ∗ ⇒ �(γ ∨ (α�ϕ∗�β)) .

(5)

To prove it in our system, below we give a derivation of ϕ∗ ⇒ �(γ ∨ (α�ϕ∗�β))
using

ϕ⇒ ¬(true�¬α), ϕ⇒ ¬(¬β�true), β ⇒ ¬(true�¬γ) and � = 0⇒ α, � = 0⇒ β
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as assumptions. Then (5) will follow by the deduction theorem for DC [28].

1 ϕ⇒ ¬(true�¬α) assumption
2 ϕ⇒ ¬(true�¬(α�� = 0)) by 1
3 � = 0⇒ ϕ∗ by DC∗

1

4 ϕ⇒ ¬(true�¬(α�ϕ∗)) by 2, 3, Monor

5 � = 0⇒ α assumption
6 � = 0⇒ (� = 0�� = 0) L2
7 � = 0⇒ (α�ϕ∗)) by 5, 6, DC∗

1 ,
Monol, Monor

8 (true�¬(α�ϕ∗))⇒ ¬� = 0 by 7, DC
9 ¬((true�¬(α�ϕ∗)) ∧ � = 0�true) by 8, Nl

10 (ϕ∗ ∧ (true�¬(α�ϕ∗)))⇒
(((true�¬(α�ϕ∗)) ∧ � = 0)�true)∨
(((ϕ∗ ∧ ¬(true�¬(α�ϕ∗))�ϕ)∧

(true�¬(α�ϕ∗)))�true) by DC∗3
11 (ϕ∗ ∧ ¬(true�¬(α�ϕ∗))�ϕ)∧

(true�¬(α�ϕ∗))⇒
(true�(α�ϕ∗�ϕ) ∧ ¬(α�ϕ∗))∨

(ϕ ∧ (true�¬(α�ϕ∗)))) DC
12 (α�ϕ∗�ϕ)⇒ (α�ϕ∗) by DC∗

2 , Monor

13 ¬((α�ϕ∗�ϕ) ∧ ¬(α�ϕ∗))
∨(ϕ ∧ (true�¬(α�ϕ∗))) by 4, Monor, 14

14 ¬(true�((α�ϕ∗�ϕ) ∧ ¬(α�ϕ∗))
∨(ϕ ∧ (true�¬(α�ϕ∗)))) by 13, Nr

15 ¬((ϕ∗ ∧ ¬(true�¬(α�ϕ∗))�ϕ)∧
(true�¬(α�ϕ∗))) by 11, 14

16 ϕ∗ ⇒ ¬(true�¬(α�ϕ∗))) by 9, 10, 15, Monol

17 ϕ∗ ∧ (¬(ϕ∗�β)�true)⇒
((((¬(ϕ∗�β)�true) ∧ � = 0)�true)∨
(((ϕ∗ ∧ ¬(¬(ϕ∗�β)�true))�ϕ)∧

(¬(ϕ∗�β)�true))�true) DC∗
3

18 � = 0⇒ β assumption
19 � = 0⇒ ϕ∗ DC∗

1

20 � = 0⇒ ¬(¬(ϕ∗�β)�true) 18, 19, DC
21 ¬((¬(ϕ∗�β)�true) ∧ � = 0�true) 20, DC
22 ¬(((ϕ∗ ∧ ¬(¬(ϕ∗�β)�true))�ϕ) ∧ (¬(ϕ∗�β)�true)�true) DC
23 ϕ∗ ⇒ ¬(¬(ϕ∗�β)�true) 17, 20, 22, DC
24 β ⇒ ¬(true�¬γ) assumption
25 ϕ∗ ⇒ �(γ ∨ (α�ϕ∗�β)) 16, 23, 24, DC

Now let us prove the correctness of the gas-burner design from the introduction
as a last example of the working of our DC∗ axioms and rule. We have to give
a derivation for

((

Leak�� ∧ � ≤ 1)�(

Nonleak�� ∧ � ≥ 30))∗ ⇒ �(� ≥ 60⇒ 20
∫

Leak ≤ �) .
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Let
ϕ � 

Leak�� ∧ � ≤ 1�

¬Leak�� ∧ � ≥ 30,
α � � = 0 ∨ 

¬Leak�� ∨ (

Leak�� ∧ � ≤ 1�

¬Leak�� ∧ � ≥ 30) ,

β, γ � � = 0 ∨ (� ≤ 1 ∧ 

Leak���� = 0 ∨ 

¬Leak��) .

The formulas

�(ϕ⇒ ¬(true�¬α) ∧ ¬(¬β�true)), �(� = 0⇒ α ∧ β) and β ⇒ ¬(true�¬γ)

are valid in DC without iteration. Therefore we can complete our derivation
using (5), provided we can derive

γ ⇒ 20
∫

Leak ≤ � and (α�ϕ∗�β) ∧ � ≥ 60⇒ 20
∫

Leak ≤ �.

The first formula is straightforward to derive without DC∗-specific axioms. Here
follows a derivation for the second formula:
1 α⇒ 31

∫
Leak ≤ � DC

2 ϕ∗ ∧ 31
∫

Leak > �⇒ (ϕ∗ ∧ 31
∫

Leak > ��true) DC
3 ϕ⇒ 31

∫
Leak ≤ � DC

4 (ϕ∗ ∧ 31
∫

Leak > ��true)⇒
(� = 0 ∧ 31

∫
Leak > ��true)∨

(((ϕ∗ ∧ 31
∫

Leak ≤ ��ϕ) ∧ 31
∫

Leak > �)�true) by DC∗3
5 � = 0⇒ 31

∫
Leak ≤ � DC

6 (ϕ∗ ∧ 31
∫

Leak > ��true)⇒
(((ϕ∗ ∧ 31

∫
Leak ≤ ��ϕ) ∧ 31

∫
Leak > �)�true) by 4, 5, Monor

7 (ϕ∗ ∧ 31
∫

Leak ≤ ��ϕ)⇒ 31
∫

Leak ≤ � by 2, 3, DC
8 ϕ∗ ⇒ 31

∫
Leak ≤ � by 6, 7, Monor

9 (α�ϕ∗)⇒ 31
∫

Leak ≤ � by 1, 8, DC
10 β ⇒

∫
Leak ≤ 1 DC

11 (α�ϕ∗�β) ∧ � ≥ 60⇒ 20
∫

Leak ≤ � by 9, 10, DC

Iteration is known chop-star in Moszkowski’s original discrete-time ITL, where
it is regarded as part of the basic system. One should notice here that the axioms
DC∗1–DC∗4 are valid in discrete-time ITL too and can be derived in its proof
system. The rule DC∗5, however, is new and DC-specific.

5 Hybrid Duration Calculus (HDC )

The modalities of DC are defined in terms of the chop-modality only. Hence, for
every expressible modality only subintervals, of a given interval, can be reached.
We also say that DC supports contracting modalities. In this section we study
a hybrid version of RDC ∗ called hybrid duration calculus (HDC ). HDC was
introduced in [8], and the results of this section comes from that paper.

”Pure” modal logics do not have a mean for referencing worlds (in our case
intervals) explicitly in formulas. In hybrid modal logics worlds can be referred to
in the syntax. We shall see in following, that the hybrid machinery, in the case
of RDC , gives us increased expressiveness as expanding modalities, for example,



A Theory of Duration Calculus with Application 139

can be expressed. Furthermore, satisfiability for HDC is still decidable, and that
problem is still non-elementary.

5.1 Syntax of HDC

We extend the language of RDC∗ (see Sect. 3.3) with a countable collection of
symbols called nominals. We use a, b, . . . to range over nominals. A nominal will
name one and only one interval. Furthermore, we extend the language with a
satisfaction operator a: for each nominal a, with the global modality E and with
the down-arrow binder ↓. The grammar of HDC is as follows:

φ ::= P | π | ¬φ | φ ∨ ψ | φ � ψ | a | a : φ | Eφ | ↓a.φ .

The intuition with the new types of formulas are: The formula a holds at the
specific interval named by a only; the formula a : φ holds if φ holds on the
interval named by a; Eφ holds if there is some interval where φ holds; and ↓a.φ
holds if φ holds under the assumption that a names the current interval. To limit
the number of required parentheses, we will use the following precedence relation
on the connectives: the down-arrow binders ↓a have the lowest precedence; �, ∨
and ∧ have the next lowest precedence; ¬, E and the satisfaction operators a :
have the highest precedence.

5.2 Semantics of HDC

In order to give semantics for HDC , we introduce the notion of an assignment
G that associates a unique interval [ta, ua] ⊆ R≥0 with each nominal a. An
interpretation I for HDC is simply as for DC. For interpretations I, assignments
G, intervals [t, u] ⊆ R≥0, and HDC formulas φ, we define the semantic relation
I, G, [t, u] |= φ below. We just give the cases which are special for HDC :

I, G, [t, u] |= π iff u = t
I, G, [t, u] |= P iff u > t and PI(t) = 1 almost everywhere on [t, u]
I, G, [t, u] |= a iff G(a) = [t, u]
I, G, [t, u] |= a : φ iff I, G, G(a) |= φ
I, G, [t, u] |= Eφ iff for some interval [v, w]: I, G, [v, w] |= φ
I, G, [t, u] |= ↓a.φ iff I, G[ a := [t, u] ], [t, u] |= φ ,

where G[ a := [t, u] ] is the assignment that assigns [t, u] to a and agrees with G
on all other nominals.

5.3 Expressivity of HDC

We will now give examples showing the extra expressiveness of HDC .

Propositional neighborhood logic: The interval logic Neighbbourhood Logic
was introduced in [68]. Neighbourhood Logic has two basic modalities ♦l (reads:
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a precedes b a meets b a overlaps b a finished by b a contains b a starts b a equals b
a� �� �

� �� �
b

a� �� �

� �� �
b

a� �� �

� �� �
b

a� �� �

� �� �
b

a� �� �

� �� �
b

a� �� �

� �� �
b

a� �� �

� �� �
b

a preceded by b a met by b a overlapped by b a finishes b a during b a started by b

b� �� �

� �� �
a

b� �� �

� �� �
a

b� �� �

� �� �
a

b� �� �

� �� �
a

b� �� �

� �� �
a

b� �� �

� �� �
a

Fig. 2. The 13 possible relations between two intervals a and b

“for some left neighbourhood) and ♦r (reads: “for some right neighbourhood).
These two modalities, which are both expanding, are defined by:

I, [t, u] |= ♦lφ iff I, [s, t] |= φ for some s ≤ t
I, [t, u] |= ♦rφ iff I, [u, v] |= φ for some v ≥ u,

and they can be expressed in HDC in the following way:

♦lφ is defined by ↓a.E(φ � a)
♦rφ is defined by ↓a.E(a � φ) ,

where the correctness is easily checked using the semantics. This shows HDC to
be more expressive than standard RDC , since RDC cannot express the neigh-
borhood modalities or other expanding modalities.

Allen’s interval relations: Allen has shown [2], that there are 13 possible re-
lations between a pair of intervals. All these relations can, in HDC , be expressed
in a natural manner [8]. Allen’s interval relations are presented in Fig. 2, and,
in Fig. 3, we show how each of the 13 relations can be expressed in HDC . In
the formulas, a and b are nominals denoting the two intervals in question. It is
a simple exercise to check the correctness of the translations in Fig. 3.

5.4 Monadic Second-Order Theory of Order

We shall reduce satisfiability of HDC to satisfiability of monadic second-order
theory of order. The following presentation of monadic second-order theory of
order, named L<

2 , is based on [53].

Syntax of L<
2 : The formulas are constructed from first-order variables, ranged

over by x, y, z, . . ., and second-order variables, ranged over by P, Q, R, . . ., as
described by the following grammar:

φ ::= x < y | x ∈ P | φ ∨ ψ | ¬φ | ∃xφ | ∃Pφ .
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a precedes b a : ♦r(¬π ∧ ♦rb)

a meets b a : ♦rb

a overlaps b E(↓c.¬π ∧ a : (¬π � c) ∧ b : (c � ¬π))

a finished by b a : (¬π � b)

a contains b a : (¬π � b � ¬π)

a starts b b : (a � ¬π)

a equals b a : b

a preceded by b a : ♦l(¬π ∧ ♦lb)

a met by b a : ♦lb

a overlapped by b E(↓c.¬π ∧ b : (¬π � c) ∧ a : (c � ¬π))

a finishes b b : (¬π � a)

a during b b : (¬π � a � ¬π)

a started by b a : (b � ¬π)

Fig. 3. Representation in HDC of the 13 possible relations between intervals

Semantics of L<
2 : A structure K = (A, B, <) for L<

2 consists of a set A,
partially ordered by <, and a set B of Boolean-valued functions on A. An element
b ∈ B can be considered a, possibly infinite, subset of A: {a ∈ A : b(a) = true}.

An interpretation I associates a member PI of B to every second-order vari-
able P and a valuation ν is a function assigning a member ν(x) of A to every
first-order variable x. The semantic relation I, ν |= φ is defined by:

I, ν |= x < y iff ν(x) < ν(y)
I, ν |= x ∈ P iff ν(x) ∈ PI
I, ν |= ¬φ iff I, ν �|= φ
I, ν |= φ ∨ ψ iff I, ν |= φ or I, ν |= ψ
I, ν |= ∃xφ iff for some a ∈ A: I, ν[x := a] |= φ
I, ν |= ∃Pφ iff for some b ∈ B: I[P := b], ν |= φ .

In the following we will assume that we have standard abbreviations for derived
relations, propositional connectives and quantifiers. Furthermore, we use the
following abbreviations:

x ≥ y =̂ ¬(x < y) and x = y =̂ x ≥ y ∧ y ≥ x ,

as we will just consider sets A with a linear order.
We shall exploit the following two decidability results for L<

2 to obtain our
decidability results for discrete and continuous-time HDC .

The first result is a classical result by Buchi. Let ω denote the L<
2 struc-

ture (N, 2N, <), where 2N denotes the set of Boolean-valued functions on natural
numbers. The logic L<

2 interpreted over the structure ω will be denoted L<
2 (ω).

Theorem 7. [10] L<
2 (ω) is decidable.

The second result is by Rabinovich [53] for so-called signal structures corre-
sponding to interpretations of continuous-time DC. A Boolean-valued function
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h from R≥0 is called a signal [53] if there exists an unbounded increasing se-
quence τ0 = 0 < τ1 < τ2 < · · · < τn < · · · such that h is constant on every open
interval ]τi, τi+1[, i ≥ 0. Let SIGNAL denote the set of all signals, and let Sig
denote the signal structure (R≥0,SIGNAL, <). The logic L<

2 interpreted over
the structure Sig will be denoted L<

2 (Sig).

Theorem 8. [53] L<
2 (Sig) is decidable.

5.5 Translation of HDC to L<
2

The translation is strongly inspired by the translation of Quantified Discrete-
Time DC to Monadic Logic over Finite Words, which is used in the tool DC-
VALID [50]. The language of second order theory of one successor (called S1S) is
L<

2 extended by the successor function. For the structure ω, the successor func-
tion is definable in L<

2 , while for continuous structures S1S is more expressive,
e.g. the validity of S1S is undecidable for signal structures [53]. In WS1S the
interpretations of the second-order variables are restricted to finite sets. Since
we have the global modality E where intervals of arbitrary size can be reached
from any given interval we must base our results on L<

2 .
The translation – discrete time: In the translation, each state variable P
corresponds to a second-order variable denoted by P also. The intuition with
the formula i ∈ P is that in the HDC interpretation P (t) = 1 in the interval
]i, i + 1[. Furthermore, for each nominal a we associate two unique first-order
variables xa and ya, where the intuition is that a names the interval [xa, ya].

The translation is defined recursively with respect to two first-order variables
x and y naming the current interval [x, y]. These must be distinct from all the
variables of the form xa and ya, where a is a nominal:

Tx,y(π) = x = y
Tx,y(P ) = x < y ∧ ∀z(x ≤ z < y → z ∈ P )
Tx,y(¬φ) = ¬Tx,y(φ)
Tx,y(φ ∨ ψ) = Tx,y(φ) ∨ Tx,y(ψ)
Tx,y(φ � ψ) = ∃z(Tx,z(φ) ∧ Tz,y(ψ) ∧ x ≤ z ∧ z ≤ y)
Tx,y(a) = x = xa ∧ y = ya

Tx,y(a : φ) = Txa,ya(φ)
Tx,y(Eφ) = ∃x∃y(x ≤ y ∧ Tx,y(φ))
Tx,y(↓a.φ) = ∃xa∃ya(x = xa ∧ y = ya ∧ Tx,y(φ)) .

In the translation for chop we assume that z is a “fresh” variable and distinct
from xa and ya for all nominals a.
The translation – continuous time: In the continuous-time case, the formu-
las of L<

2 are interpreted in signal structures and [53] contains a translation from
RDC to L<

2 . We can adapt the translation above to a translation for continuous-
time HDC by changing the translation of P only. The translation Tx,y(P ) is:

x < y ∧ ∀z(x < z < y → ∃v(x < v < z ∧ ∀t(v < t < z → t ∈ P )))
∧ ∀z(x < z < y → ∃v(z < v < y ∧ ∀t(z < t < v → t ∈ P ))) .
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The idea behind this translation is: P is 1 almost everywhere in [x, y] (x < y) iff
for every z ∈]x, y[ there are left and right neighborhoods of z where P is constant
and equal to 1.

We will just refer to [8] for the correctness proofs for the translations. The
main result only is stated here.

Theorem 9. [8] HDC is decidable for discrete and continuous-time domains.

Since neighbourhood modalities are expressible in HDC this result shows that
a propositional neighbourhood logic based on RDC is decidable.

6 Model-Checking: Using Priced Timed Automata

In this section we will present the model-checking result described in [16]. In
particular, we shall address the model-checking problem:

A |= ¬φ ,

where A is an arbitrary timed automaton. The formula φ is a negation-free
formulas where linear duration constraints can occur in an arbitrary positive
Boolean context as described by the grammar:

S ::= 0 | 1 | P | ¬S | S1 ∨ S2

φ ::= � �� k | 

S�� |
∑m

i=1 ci

∫
Si �� k | φ ∨ ψ | φ ∧ ψ | φ � ψ ,

where k, m, ci ∈ N, and ��∈ {<,≤, =,≥, >}. We shall assume that formulas
contain only upper-bound constraints on durations, i.e. where ��∈ {<,≤}, and
where exactly one duration constraint is a strict inequality. Such formulas are
called negation-free formula in this section. Adding general negation to this frag-
ment would lead to one of the undecidable fragments described in Sect. 3.

In a model-checking problem of the form A |= ¬φ, the formula φ is a speci-
fication of an undesired situation – a counter example – and A |= ¬φ expresses
that no run of A exist where this undesired situation occurs. This idea is, for
example, pursued in [47,30], where φ can have the restricted form of a DC im-
plementable [57], thus abandoning accumulated durations and replacing chop by
more restricted, operationally inspired operators.

6.1 Multi-priced Timed Automata

We shall reduce the satisfiability problem for negation-free formulas above to
a problem of computing minimal costs in multi-priced timed automata (MPTA)
[41]. MPTA are an extension of timed automata [3,4], where prices are associated
with edges and locations. The cost of taking an edge is the price of that edge,
and the cost of staying in a location is given by the product of the cost-rate for
that location and the time spent in the location.

Let C be a finite set of clocks. An atomic constraint is a formula of the form:
x �� n, where x ∈ C, ��∈ {≤, =,≥, <, >}, and n ∈ N. A clock constraint over C is
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a conjunction of atomic constraints. Let B(C) denote the set of clock constraints
over C and let B(C)∗ denote the set of clock constraints over C involving only
upper bounds, i.e. ≤ or <. Furthermore, let 2C denote the power set of C.

A clock valuation v : C → R≥0 is a function assigning a non-negative real
number with each clock. The valuation v satisfies a clock constraint g ∈ B(C),
if each conjunct of g is true in v. In this case we write v ∈ g. Let R

C

≥0 denote
the set of all clock valuations.

Definition 1. ([41]) A multi-priced timed automaton A over clocks C is a tuple
(L, l0, E, I, P ), where L is a finite set of locations, l0 is the initial location,
E ⊆ L × B(C) × 2C × L is the set of edges, where an edge contains a source, a
guard, a set of clocks to be reset, and a target. I : L→ B(C)∗ assigns invariants
to locations, and P : (L ∪ E) → N

m assigns a vector of prices to both locations
and edges. In the case of (l, g, r, l′) ∈ E, we write l

g,r−→ l′.

A multi-priced transition system is a structure T = (S, s0, Σ,−→), where S is
a, possibly infinite, set of states, s0 ∈ S is the initial state, Σ is a finite set
of labels, and −→ is a partial function from S × Σ × S to R

m
≥0, defining the

possible transitions and their associated costs. The notation s
a−→p s′ means

that −→ (s, a, s′) is defined and equal to p.
An execution of T is a finite sequence α = s0

a1−→p1 s1 · · · sn−1
an−→pn sn,

and the associated cost of α is cost(α) =
∑n

i=1 pi.
For a given state s and a vector u = (u1, . . . , um−1) ∈ R

m−1
≥0 , let mincostT,u(s)

denote the minimum cost wrt. the last component of the price vector of reaching
s while respecting the upper bound constraints to the other prices which are
given by u. This is defined as the infimum of the cost of all executions ending
in s and respecting price constraint u, i.e.

mincostT,u(s) = inf
{

cost(α)m

∣∣∣∣
α an execution of T ending in s,
∀i ∈ N<m.cost(α)i ≤ ui

}
.

Furthermore, for a set of states G ⊆ S, let mincostT,u(G) denote the minimal
cost of reaching some state in G while respecting the upper price bounds u.

The semantics of a linearly multi-priced timed automaton A = (L, l0, E, I, P )
is a multi-priced transition system TA = (S, s0, Σ,−→), where

– S = L× R
C

≥0,
– s0 = (l0, v0), where v0 is the (clock) valuation assigning 0 to every clock,
– Σ = E ∪ {δ}, where δ indicates a delay and e ∈ E the edge taken, and
– the partial transition function −→ is defined as follows:

• (l, v) δ−→p (l, v + d) if ∀e.0 ≤ e ≤ d : v + e ∈ I(l), and p = d · P (l),
• (l, v) e−→p (l′, v′) if (l, g, r, l′) ∈ E, v ∈ g, v′ = v[r �→ 0] and p = P (e),

where v + d means the clock valuation where the value of x is v(x) + d, for
x ∈ C, d ∈ R≥0, and v[r �→ 0] is the valuation which is as v except that
clocks in r are mapped to 0.
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In case TA performs a δ step (l, v) δ−→p (l, v + d), we say that the duration of
the step is d. All other steps, i.e. those labelled e ∈ E, have duration 0.

The main results that we shall exploit concerning linearly multi-priced timed
automata is that the minimum cost of reaching some target location is com-
putable for any (set of) target location(s) and any upper bound on the remain-
ing prices: Given an MPTA A = (L, l0, E, I, P ), a target G ⊂ L, and some
cost constraint u ∈ R

m−1
≥0 , we define the minimum cost mincostA,u(G) to be

mincostTA,u(G× R
C

≥0).

Theorem 10. [41] For any MPTA A = (L, l0, E, I, P ), any set G ⊂ L, and any
cost constraint u ∈ R

m−1
≥0 , the minimum cost mincostA,u(G) is computable.

6.2 Representing Negation-Free Formulas by MPTA

In the construction of a MPTA for a negation-free formula φ, we represent φ
by a tuple (L, s, E, I, P, f, Λ) denoted Aφ, where (L, s, E, I, P ) is a multi-priced
timed automaton, f is a special final location to be reached, and Λ is a function
associating a state expression S (of DC) with every location. The automaton will
not spend (positive) time in the final location, and the idea is that the runs of Aφ

from the start location s to f represent the models of φ. Durational constraints∑m
i=1 ci

∫
Si �� k are, however, treated in a special way: for any run from s to f ,

the value of
∑m

i=1 ci

∫
Si is the cost of the execution, and an analysis of minimal

costs will be used decide the satisfaction of
∑m

i=1 ci

∫
Si �� k.

The construction [16]: We shall use the following conventions: the cost of
an edge is always 0, the cost-rate of a location is 0 unless otherwise stated, the
invariant of a location is true unless otherwise stated, the mark of a location l
is the state expression 1, i.e. Λ(l) = 1, unless otherwise stated. Furthermore, we
assume that the formula φ contains n distinct state variables P1, . . . , Pn and m
subformulas

∑mj

i=1 ci,j

∫
Si,j ��j kj , where ��m=< and ��j=≤ for every j < m.

The construction follows the structure of the formula.

The case φ = � �� k. (See Fig. 4(a).) Let Aφ = (L, s, E, I, P, f, Λ), where

– L = {s, f},
– E = {(s, x �� k, {x}, f)}, and
– I(f) = x ≤ 0.

The case φ = 

S��. (See Fig. 4(b).) Let Aφ = (L, s, E, I, P, f, Λ), where

– L = {s, l1, f},
– E = {e1, e2, e3}, where e1 = (s, true, {}, l1), e2 = (l1, y > 0, {y}, s), and

e3 = (l1, x > 0, {x}, f),
– I(s) = y ≤ 0 and I(f) = x ≤ 0, and
– Λ(l1) = S.
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(a) (b)

1

f

x ≤ 0
x �� k/
x := 0

1

s
y ≤ 0

S

l1

x := 0
x > 0/

y := 0
y > 0/

s

1

true/

1

x ≤ 0

f

(c)

Q ∧R
Pj = c + d Pj = c + d

x := 0
true/

1

f

x ≤ 0

s

1

x ≤ 0 true/

(0, 0) (0, 1)

(1, 1)

Pj = d

(1, 0)

¬Q ∧ ¬R ¬Q ∧ R

Q ∧ ¬R

Fig. 4. MPTA encoding of atomic formulas: (a) � �� k, (b) S��, (c) c
�
Q+d

�
Q ∨ R �� k.

State decorations above the dashed line denote invariants and cost assignments (both
omitted if trivial), while those below the dashed line denote the labeling function Λ.

The case φ =
∑mj

i=1 ci,j

∫
Si,j ��j kj. (See Fig. 4(c).) Let Aφ = (L, s, E, I, P, f, Λ),

where L = {s, f} ∪ {0, 1}n and E, I, P and Λ are defined below. Each bit-vector
b = (b1, . . . , bn) ∈ {0, 1}n is such that bi = 1 iff Pi is 1 in that state. The edges
E = E1 ∪E2 ∪ E3, where

– E1 = {(s, true, ∅, b) | b ∈ {0, 1}n},
– E2 = {(b, true, ∅, b′) | b, b′ ∈ {0, 1}n ∧ b �= b′}, and
– E3 = {(b, true, {x}, f) | b ∈ {0, 1}n}.

For b ∈ {0, 1}n, we define two sets: b+ = {l ∈ N | 1 ≤ l ≤ n ∧ bl = 1} and
b− = {l ∈ N | 1 ≤ l ≤ n ∧ bl = 0}. Let F (b) denote the state expression:

∧

l∈b−

¬Pl ∧
∧

l∈b+

Pl .

For each state expression Si,j occurring in the summation
∑mj

i=1 ci,j

∫
Si,j , we

define the cost rate as follows:

C(b)(Si,j) =

{
ci,j , if F (b)⇒ Si,j ,

C(b)(Si,j) = 0 otherwise.

The invariants of locations are as follows: I(s) = x ≤ 0, I(f) = x ≤ 0, and for
all other locations the invariant is true.

The cost assignment P : L ∪E → N
m is defined as follows:

P (l)k =
{

0 if l = s or l = f or k �= j or l ∈ E∑mj

i=1 C(l)(Si,j) otherwise.
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The definition Λ is Λ(l) = 1 if l = s or l = f , and F (l) otherwise.

In the recursive cases: φ∨ψ, φ∧ψ and φ�ψ below, we will assume that Aφ =
(L1, s1, E1, I1, P1, f1, Λ1) and Aψ = (L2, s2, E2, I2, P2, f2, Λ2), have disjoint sets
of locations and clocks, respectively. These constructions are generalization of
standard constructions on finite automata.

The case φ∨ψ. Assume that s and f are two new locations and that x is a new
clock. Let Aφ∨ψ = (L, s, E, I, P, f, Λ), where
– L = {s, f} ∪ L1 ∪ L2,
– E = {e1, e2, e3, e4}∪E1∪E2, where e1 = (s, true, {}, s1), e2 = (s, true, {}, s2),

e3 = (f1, true, {x}, f), and e4 = (f2, true, {x}, f).
– I(s) = I(f) = x ≤ 0, I(l) = I1(l), for l ∈ L1, and I(l) = I2(l), for l ∈ L2,
– P (l) = P1(l), for l ∈ L1, and P (l) = P2(l), for l ∈ L2, and
– Λ(l) = Λ1(l), for l ∈ L1, and Λ(l) = Λ2(l), for l ∈ L2.

The case: φ ∧ ψ. Let Aφ∧ψ = (L, (s1, s2), E, I, P, (f1, f2), Λ), where
– L = {(l1, l2) ∈ L1 × L2 | Λ1(l1) ∧ Λ2(l2) is satisfiable},

– E =

⎧
⎨

⎩((l1, l2), g1 ∧ g2, r1 ∪ r2, (l′1, l
′
2))

∣∣∣∣∣∣

(l1, l2), (l′1, l
′
2) ∈ L

∧ (l1, g1, r1, l
′
1) ∈ E1

∧ (l2, g2, r2, l
′
2) ∈ E2

⎫
⎬

⎭ ∪

{((l1, l2), g1, r1, (l′1, l2)) | (l1, l2), (l′1, l2) ∈ L ∧ (l1, g1, r1, l
′
1) ∈ E1 } ∪

{((l1, l2), g1, r1, (l1, l′2)) | (l1, l2), (l1, l′2) ∈ L ∧ (l2, g2, r2, l
′
2) ∈ E2 }

– I(l1, l2) = I1(l1) ∧ I2(l2), for (l1, l2) ∈ L,
– P (l1, l2)k = P1(l1)k + P2(l2)k, for (l1, l2) ∈ L and 1 ≤ k ≤ m and
– Λ(l1, l2) = Λ1(l1) ∧ Λ2(l2), for (l1, l2) ∈ L.

The case: φ � ψ. Let Aφ�ψ = (L1 ∪ L2, s1, E, I, P, f2, Λ), where
– E = {(f1, true, C2, s2)} ∪E1 ∪E2, where C2 is the set of clocks used by Aψ ,
– I(l) = I1(l), for l ∈ L1, and I(l) = I2(l), for l ∈ L2,
– P (l) = P1(l), for l ∈ L1, and P (l) = P2(l), for l ∈ L2.
– Λ(l) = Λ1(l), for l ∈ L1, and Λ(l) = Λ2(l), for l ∈ L2.

The transition from f1 to s2 is taken immediately when f1 is reached, as the
clock constraints in I1(f1) does not permit durational stays in f1.

In order to reduce the satisfiability problem for negation-free formulas to
computation of minimal costs for MPTA, a correspondence between interpreta-
tions for formulas and runs of MPTA must be established: consider a transition
(l, v) δ−→p (l, v + d), where the location l is labelled with the state expression
S. This transition corresponds to a set of interpretations (of length δ) for which
S is 1 almost everywhere. The set of interpretations corresponding to an ex-
ecution is obtained by concatenation of the interpretations for the individual
transitions. For further details we just refer to [16], and assume for now that
for every run α of Aφ, there is a set of observations Intp(α) corresponding to α,
where an observation is a pair consisting of an interpretation and an interval.
The correspondence between runs and observations is stated in the following
lemma.
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Lemma 2. [16] Let φ be a negation-free formula. Then I, [0, e] |= φ iff there
exists a run α of Aφ with (I, [0, e]) ∈ Intp(α) and cost(α)j ��j kj for 1 ≤ j ≤ m.

The main result follows from this lemma.

Theorem 11. [16] Let φ be a negation-free formula, Aφ = (L, s, E, I, P, f, Λ),
and u = (k1, . . . , km−1). Then mincost(L,s,E,I,P ),u(f) < km iff φ is satisfiable.

The above construction can also be used for model-checking a timed automaton
wrt. a negation of a negation-free formula, as stated in the next theorem.

Theorem 12. [16] Let A = (L1, s1, E1, I1, Λ1) be a timed automaton (L1, s1,
E1, I1) extended by a location labelling Λ1 : L1 → S, φ a negation-free formula,
Aφ = (L2, s2, E2, I2, P2, f2, Λ2), and u = (k1, . . . , km−1).

Then A |= ¬φ iff mincost(L,s,E,I,P ),u(f × L1) ≥ km, where
– B = (L1, s1, E1, I1, P0, s, Λ1) is A converted to an MPTA by extension with

the trivial cost function P0 ≡ 0 and an irrelevant terminal state s ∈ L1,
– (L, s, E, I, P, f, Λ) = Aφ ⊗B is the MPTA-product from case φ ∧ ψ.

7 Model-Checking: Linear Duration Invariants

In this section, we present a model checking technique for a class of chop-free
formulas of DC called linear duration invariants which is different from the
technique presented in the previous section. From now on in this chapter, we
restrict ourselves to the class of DC formulas that do not have global (rigid)
variables. Therefore, the valuation V is irrelevant in DC models and will be
dropped out from them.

Let S ranged over by s, u, v, . . ., be a finite set of state variables of the DC
language. A linear duration invariant is a DC formula of the form

ψ =̂ (A ≤ � ≤ B ⇒
∑

s∈S cs

∫
s ≤M)

where A, B, cs, M , (A ≤ B) are fixed real numbers (B may be ∞).
We address in this section the problem of checking if a timed automaton

satisfies a linear duration invariant. To simplify our presentation and to make
the problem easier, we restrict ourselves to the class of timed automata whose
behaviour can be represented by a class of so-called Timed Regular Expressions
(TRE) that has been introduced in [1] and also from our earlier work [34,43]. The
relationship between TRE’s and timed automata was presented in [1] which says
that the class of timed languages recognised by timed automata can be received
from that of timed regular languages with renaming.

A DC model represents an observation of the behaviour of states in S in an
interval of time. It consists of an interval [0, T ] and an interpretation I in the
interval [0, T ] of the states in S.

Timed Regular Expressions are defined as follows. For a TRE R, let state(R)
denote the set of states occurring in R.
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Definition 2. TRE are defined recursively by
1. ε is a TRE and state(ε) = ∅.
2. For any s ∈ S, s is a TRE and state(s) = {s}.
3. If R is a TRE, for any real numbers a, b, 0 ≤ a ≤ b (b may be ∞), the pair

(R, [a, b]) is a TRE, and state(R, [a, b]) = state(R).
4. If R1, R2 are TRE’s, then R∗

1, R1
�R2, R1⊕R2 are TRE’s, and state(R∗

1) =
state(R1); state(R1

�R2) = state(R1 ⊕R2) = state(R1) ∪ state(R2).
5. If R1, R2 are TRE’s, and state(R1)∩ state(R2) = ∅, then R1⊗R2 is a TRE,

and state(R1 ⊗R2) = state(R1) ∪ state(R2).

Here we overload the operator � to be defined in TRE’s because the meaning
we are going to give to it is similar to its meaning in DC. The operator � is
for sequential composition, the operator ⊗ for parallel composition, and ∗ for
repetition.

To see how TRE’s are used as abstract model for real-time systems, we asso-
ciate a set of Duration Calculus model to each TRE. Each TRER defines a class
of DC models M(R) as:

1. A model σ = (I, [0, T ]) is in M(ε) iff T = 0.
2. A model σ = (I, [0, T ]) is in M(s) iff 0 ≤ T , and for all t ∈ [0, T ] sI(t) = 1,

and for all s′ �= s s′I(t) = 0.
3. A model σ = (I, [0, T ]) is in M(R, [a, b]) iff σ = (I, [0, T ]) ∈ M(R) and

a ≤ T ≤ b.
4. A model σ = (I, [0, T ]) is in M(R1

�R2) iff there are 0 ≤ T ′ ≤ T , σ1 =
(I1, [0, T ′]) ∈ M(R1), σ2 = (I2, [0, T − T ′]) ∈ M(R2) such that for all s ∈
state(R1)∪state(R2), sI1(t) = sI(t) for all t ∈ [0, T ′) and sI2(t−T ′) = sI(t)
for all t ∈ [T ′, T ], and for all s′ �∈ state(R1) ∪ state(R2), s′I(t) = 0 for all
t ∈ [0, T ]. We also define σ = σ1

�σ2.
5. A model σ = (I, [0, T ]) is in M(R1 ⊗ R2) iff there are σ1 = (I1, [0, T ]) ∈
M(R1), σ2 = (I2, [0, T ]) ∈ M(R2) such that for all t ∈ [0, T ], sI1(t) = sI(t)
for all s ∈ state(R1), and sI2(t) = sI(t) for all s ∈ state(R2), and s′I(t) = 0
for all s′ �∈ state(R1) ∪ state(R2), and then we define σ1 ⊗ σ2 as σ.

6. A model σ = (I, [0, T ]) ∈ M(R1 ⊕R2) iff σ ∈ M(R1) or σ ∈ M(R2)
7. A model σ = (I, [0, T ]) ∈ M(R∗) iff there is an integer k ≥ 0 such that

σ ∈ M(Rk), where R0 =̂ ε, and for k > 0, Rk =̂ R�Rk−1. Or, equivalently,
either σ = (I, [0, 0]) or there are models σ1, . . . , σk ∈ M(R) such that σ =
σ1

�σ2
�. . . �σk. (It should be noted here that � is associative).

So, if we consider R as the abstract model of a real-time system, a model
σ ∈ M(R) represents a behaviour of the system. Our checking problem in this
subsection is to decide if σ |= ψ for all σ ∈M(R) for a given TRE R and a given
LDI ψ.

The algorithm for solving this problem is presented via a series of lemmas and
theorems. Therefore, for the readability, we also give a proof for some theorems
in this section.

For simplicity, let ds(σ) denote the accumulated time (duration) of state s ∈ S
over the interval [0, T ] under the interpretation I, i.e. ds(σ) =

∫ T

0 sI(t)dt, let d(σ)
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denote the length of the interval [0, T ], i.e. T , and let inv(σ) denote
∑

s∈S csds(σ)
(i.e.

∑
s∈S cs

∫
s evaluated over σ). Hence, σ |= ψ iff A ≤ d(σ) ≤ B ⇒ inv(σ) ≤

M .

Lemma 3. [34] Let σ, σ1 = (I1, [0, T1]), σ2 = (I2, [0, T2]) ∈ M(R2) be DC
models. Then,
1. if σ = σ1

�σ2 then ds(σ) = ds(σ1)+ds(σ2) for all s ∈ S, d(σ) = d(σ1)+d(σ2)
and inv(σ) = inv(σ1) + inv(σ2), and

2. if σ = σ1 ⊗ σ2 then ds(σ) = ds(σ1) + ds(σ2) for all s ∈ S, d(σ) = d(σ1) =
d(σ2), and inv(σ) = inv(σ1) + inv(σ2).

We will not distinguish the TRE’s that define the same set of DC models.

Definition 3. For arbitrary TRE’s R1, R2, we say R1 ≡ R2 iff M(R1) =
M(R2).

The following theorem can be proved by direct check.

Theorem 13. For arbitrary TRE’s R, R1, R2

1. (R1 ⊕R2)�R ≡ (R1
�R)⊕ (R2

�R) and R�(R1 ⊕R2) ≡ (R�R1)⊕ (R�R2)
2. (R1 ⊕R2)⊗R ≡ (R1 ⊗R)⊕ (R2 ⊗R) and

R⊗ (R1 ⊕R2) ≡ (R ⊗R1)⊕ (R⊗R2)
3. (R1 ⊕R2)∗ ≡ ((R∗

1)
�(R∗

2))
∗

Theorem 13 implies that any TRE R can be written as R1 ⊕ R2 ⊕ . . . ⊕ Rk,
where each Ri is a TRE in which there is no occurrence of ⊕.

Since we are interested in checking a TRE for the linear duration invariant ψ,
we will not distinguish the TRE’s of which the sets of models satisfy ψ at the
same time, and define:

Definition 4. R1 and R2 are ψ-equivalent, denoted by R1 ≡ψ R2, iff R1 |= ψ
if and only if R2 |= ψ.

Of course, if R1 ≡ R2 then R1 ≡ψ R2. The following theorem follows immediately
from Lemma 3.

Theorem 14. For arbitrary TRE’s R1, R2

1. R1
�R2 ≡ψ R2

�R1

2. (R1 ⊕R2)∗ ≡ψ (R∗
1)

�(R∗
2)

3. ((R∗
1)�R2)∗ ≡ψ (R∗

1)�R∗
2

4. (R∗
1 ⊗R∗

2)
∗ ≡ (R∗

1 ⊗R∗
2)

Definition 5.
– A TRE R in which there is no occurrence of the operator ∗ is said to be finite.

Otherwise, R is said to be infinite.
– A simple TRE is a finite TRE in which there is no occurrence of the operator
⊕.



A Theory of Duration Calculus with Application 151

First we show how to decide for a finite TRE R, R |= ψ. We will only have to
consider the simple TRE’s because any finite TRE R can be written as R1⊕ . . .⊕
Rk, where each Ri is a simple TRE’s, and R |= ψ iff for all i (i ≤ k), Ri |= ψ.

Let R be a simple TRE. We associate a set of linear constraints C(R), the
set of durations {ds(R) | s ∈ S} and execution time d(R) to R as follows. Let
V ar(C(R)) denote the set of (real) variables occurring in C(R).

Definition 6.

– Let R = s. Then C(R) = ∅, ds(R) = t, d(R) = t where t is a real variable,
and ds′(R) = 0 for all s′ �= s.

– Let R = (R1, [a, b]). Then C(R) = C(R1)∪ {a ≤ d(R1) ≤ b}, ds(R) = ds(R1)
for all s, and d(R) = d(R1).

– Let R = R1
�R2. By renaming the variables if necessary, we can assume

that V ar(C(R1)) ∩ V ar(C(R2)) = ∅. Then, C(R) = C(R1) ∪ C(R2), ds(R) =
ds(R1) + ds(R2) and d(R) = d(R1) + d(R2).

– Let R = R1⊗R2. Assume that V ar(C(R1))∩V ar(C(R2)) = ∅. Then, C(R) =
C(R1) ∪ C(R2) ∪ {d(R1) = d(R2)}, ds(R) = ds(R1) + ds(R2) for all s ∈ S,
and d(R) = d(R1).

Let inv(R) denote
∑

s∈S csds(R).

For instance, let R be

((s, [1, 5])�(u, [1, 7]))⊗ (v, [3, 10]) .

Then, we can associate to each primitive in R a variable, say to (s, [1, 5]) variable
x, to (u, [1, 7]) variable y and to (v, [3, 10]) variable z. Then, C(R) = {1 ≤ x ≤
5, 1 ≤ y ≤ 7, 3 ≤ z ≤ 10, x + y = z}, d(R) = z, ds(R) = x, du(R) = y, and
dv(R) = z.

For a solution w of the system of linear constraints C(R), denote by ds(R)(w),
d(R)(w) and inv(R)(w) respectively, the value of ds(R), d(R) and inv(R) evalu-
ated over w. For vectors w1 = (t1, t2, . . . , tp) and w2 = (u1, u2, . . . , uq), we denote
by (w1, w2) the vector (t1, t2, . . . , tp, u1, u2, . . . , uq), and if p = q we denote by
w1 + w2 the vector (t1 + u1, t2 + u2, . . . , tp + up).

Let ψ(R) denote max{inv(R)} subject to C(R) ∪ {A ≤ d(R) ≤ B}.

Theorem 15. [34] For a simple TRE R, R |= ψ iff ψ(R) ≤M .

From Theorem 15, for a simple TRE R, checking R |= ψ can be done by solving
the linear programming problem to find ψ(R) and comparing it to M .

Example 1. Let
R = ((s, [1, 5])�(u, [1, 7]))⊗ (v, [3, 10])
ψ = 4 ≤ � ≤ 8⇒ 2

∫
s−
∫

v ≤ 5q

Let x, y, z be variables associated to the primitives (s, [1, 5]), (u, [1, 7]),
(v, [3, 10]) respectively. R |= ψ can be checked by solving the linear program-
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ming problem
max{2x− z} subject to 1 ≤ x ≤ 5

1 ≤ y ≤ 7
3 ≤ z ≤ 10
z = x + y
4 ≤ z ≤ 8

and checking whether it is less than 5. It is easy to see that the solution of the
linear programming problem is x = 5, y = 1, z = 6 and the maximal value of
the objective function is 4, which is less than 5. #$

Let R be an infinite TRE. By replacing each occurrence of the operator ∗ (repe-
tition) with a fresh integer variable ki, we obtain a finite TREand can associate
a finite number of linear programming problems to it. However, because the set
of values of ki’s is infinite, the number of linear programming problems is also
infinite. It is therefore impossible to solve all of these problems.

In the following sections, we will introduce a technique to reduce an infinite
TRE to a finite TRE which is ψ-equivalent to it, and therefore an infinite TRE
could be checked for ψ. This technique was first introduced by Zhou et al [73]
and was generalized by us in [43] and [34].

Reducing TRE’s to finite TRE’s. From now on we assume that any subexpres-
sion of TRE R is not of the form (R′, [0, 0]) because removing the subexpressions
of that form from R does not change the set M(R).

Let R, R′ be TRE’s. If there is an occurrence of R′ in R, then R′ is called
sub-expression of R. For example, let R = ((s, [1, 5])�(u, [1, 7])) ⊗ (v, [3, 10])∗.
Then (s, [1, 5]), (u, [1, 7]), (v, [3, 10]), (s, [1, 5])�(u, [1, 7]), (v, [3, 10])∗ and R are
sub-expressions of R. A sub-expression R′ of R can occur at many different
positions in R. In the sequel, when we talk about a subexpression of R, we mean
an occurrence of its in R.

An TRE R for which M(R) = ∅ is said to be empty TRE and denoted by
Λ. For example, (s, [3, 5]) ⊗ (v, [6, 9]) is an empty TRE. We will show how to
recognise an empty expression later in the section.

For any TRE R in which there is no occurrence of an empty sub-expression,
we associate with the numbers m(R), M(R) as follows. Roughly speaking, m(R)
is a lower bound and M(R) is an upper bound of the set {d(σ) | σ ∈M(R)}.

Definition 7.
– If R = ε, then m(R) = 0 and M(R) = 0.
– If R = (R1, [a, b]), then m(R) = min{m(R1), a} and M(R) = max{M(R1)

, b} (b may be ∞).
– If R = R∗

1, then m(R) = 0 and M(R) =∞.
– If R = R1

�R2, then m(R) = m(R1)+m(R2) and M(R) = M(R1)+M(R2).
– If R = R1 ⊕R2,

then m(R) = min(m(R1), m(R2)) and M(R) = max(M(R1), M(R2)).
– If R = R1 ⊗R2,

then m(R) = max(m(R1), m(R2)) and M(R) = min(M(R1), M(R2)).
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From Definition 7, it is easy to see that if R is a simple TRE and M(R) < ∞
then m(R), M(R) are minimum and maximum of the set {d(σ) | σ ∈ M(R)}.
Furthermore, for any TRE R, for any σ ∈M(R), m(R) ≤ d(σ) ≤M(R).

For example, let

R = ((s, [1, 5])�(u, [1, 7]))⊗ (v, [3, 10]) .

Then, m(R) = 3 and M(R) = 10. This means that for any σ ∈ M(R), 3 ≤
d(σ) ≤ 10.

An important remark should be made here is that for any simple TRE R, for
any real number r such that m(R) ≤ r ≤M(R), there is a model σ ∈ M(R) for
which d(σ) = r. Therefore, checking the emptiness of a simple TRE R is trivial.
Hence, for a simple TRE R, m(R) = 0 means that for any constrained expression
(R1, [a, b]) occurring in R the lower bound a should be 0.

Note that for any non empty TRE’s R1, R2, the expression R1 ⊗ R2 may be
empty although the expressions R1

�R2, R1 ⊕R2, R
∗
1 cannot be empty.

If R is not an empty TRE, we can find out R1 such that R1 has no empty
sub-expression and thatM(R) =M(R1). Thus, from now on, unless otherwise
stated, we assume that all TRE’s under our consideration are not empty TRE’s
and do not have any empty sub-expression.

Let R1, R2 be TRE’s. As discussed earlier, if R = R1⊗R2 then any σ ∈ M(R)
is constructed from models σ1 ∈ M(R1) and σ2 ∈ M(R2) such that d(σ1) =
d(σ2). Hence, the execution time of R1 is limited by the execution time of R2

and vice-versa. In general, the execution time of R′, where R′ is an arbitrary
sub-expression of R1, is not only bounded by m(R′) and M(R′) but also by
m(R2) and M(R2). This means that the execution time of a sub-expression R′

in a TRE R is constrained by the operator ⊗ and by its occurrence position in
R. To capture these constraints we define the quantities m(R′, R) and M(R′, R)
as lower and upper bounds of the time execution of R′ when it occurs at fixed
position in R. m(R′, R) and M(R′, R) are defined recursively as follows.

Definition 8.

– Let R = R′. m(R′, R) = 0 and M(R′, R) =∞ (no additional constraint).
– Let R = R1 � R2 (R2 � R1, R∗

1), where � ∈ {�,⊕} and R′ occurs in R1.
Then m(R′, R) = m(R′, R1) and M(R′, R) = M(R′, R1) (no additional con-
straint).

– Let R = R1 ⊗ R2 (R2 ⊗ R1), and let R′ occur in R1. Then m(R′, R) =
max(m(R′, R1), m(R2)) and M(R′, R) = min(M(R′, R1), M(R2)) (addi-
tional constraint enforced by the operator ⊗).

For example, let

R = ((s, [1, 5])�(u, [1, 7]))⊗ (v, [3, 10])∗ .

Let R′ = (s, [1, 5])�(u, [1, 7]) then m(R′, R) = 0 and M(R′, R) =∞.
Let R′ = (v, [3, 10])∗. Then m(R′, R) = 2 and M(R′, R) = 12.
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Denote M(R′, R) = {σ ∈ M(R′) | m(R′, R) ≤ d(σ) ≤ M(R′, R)}. From the
above discussion, it can be seen that only the models inM(R′, R) can participate
in constructing models of R. Therefore, from now on, if R′ is considered as a
sub-expression (occurring at a fixed position) of R then we can use M(R′, R)
forM(R′).

By induction on the structure of TRE’s, we can prove the following lemmas.

Lemma 4. Let R1, R2, R′ be arbitrary TRE’s. If for any model σ1 ∈ M(R1),
there exists a model σ2 ∈M(R2) such that d(σ1) = d(σ2) and inv(σ1) ≤ inv(σ2)
then for any model σ′

1 ∈M(R1
�R′) (M(R1⊕R′) ,M(R1⊗R′) ,M(R∗

1)) there
exists a model σ′

2 ∈ M(R2
�R′) (M(R2 ⊕ R′), M(R2 ⊗R′), M(R∗

2)) such that
d(σ′

1) = d(σ′
2) and inv(σ′

1) ≤ inv(σ′
2).

Lemma 5. Let R, R1, R2 be arbitrary TRE’s. If
1. For any model σ1 ∈ M(R1), there exists a model σ2 ∈ M(R2) such that

d(σ1) = d(σ2) and inv(σ1) ≤ inv(σ2), and
2. For any model σ2 ∈ M(R2), there exists a model σ1 ∈ M(R1) such that

d(σ2) = d(σ1) and inv(σ2) ≤ inv(σ1),
then by replacing an occurrence of R1 in R with R2, we obtain a new expression
R′ which is ψ-equivalent to R, i.e. R′ ≡ψ R.

Let �x� be the floor of a real variable x, which is the maximal integer which are
not greater than x.

Theorem 16. [34] Let R1 be a simple TRE with m(R1) = 0. Let R′
1 be the TRE

obtained from R1 by replacing each subexpression of the form (R′′, [0, b]) of R1

with (R′′, [0,∞)) (remember that b > 0 as assumed earlier). Then, by replacing
an occurrence of R∗

1 in a TRER with R′
1, we obtain a new expression R′ which

is ψ-equivalent to R.

Theorem 17. [34] Let R1 be a simple TRE with m(R1) > 0. Let R∗
1 be an

occurrence of the TRE R∗
1 in a TRE R for which M(R∗

1, R) < ∞ or B < ∞
(recall that B is the upper bound of the observation time period in the premise
A ≤ � ≤ B of the linear duration invariant ψ). Let R′

1 = ⊕k
i=0R

i
1, where k =

�min {M(R∗
1, R), B}/(m(R1)� + 1). Then by replacing the occurrence R∗

1 in R
with R′

1, we obtain a new expression R′ which is ψ-equivalent to R.

Let R′ be a sub-expression of R. R′ is said to be under ⊗ if there is a sub-
expression of form R1⊗R2 of R such that R′ occurs either in R1 or in R2. If A∗

is not under ⊗, then by definition 8, M(A∗, R) =∞.
Given a simple TRE R1. Let maxinv(R1) denote the maximal value of

{inv(σ) | σ ∈ M(R1)}. maxinv(R1) can be computed by solving the linear pro-
gramming problem: finding the maximum of the objective function

∑
s∈S csds

(R1) subject to the set of constraints C(R1).

Lemma 6. Let K be a real number, R∗
1 be a sub-expression of R which is not

under ⊗, where R1 is a simple TRE with m(R1) > 0, maxinv(R1) ≤ 0. Assume
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that B =∞. Furthermore, let R′ be obtained from R by replacing the occurrence
R∗

1 in R by R′
1 =

⊕k
i=0R

i
1 with k = �K/m(R1)�+ 1.

Then, for any model σ ∈ M(R) such that d(σ) ≥ K, there exists a model
σ′ ∈M(R′) such that d(σ′) ≥ K, and inv(σ) ≤ inv(σ′).

Theorem 18. [34] Let B = ∞, and R∗
1 be a sub-expression of R such that R∗

1

is not under ⊗, where R1 is a simple TRE with m(R1) > 0. Then
1. If maxinv(R1) ≤ 0, then by replacing R∗

1 in R with R′
1 = ⊕k

i=0R
i
1, where

k = �A/m(R1)�+ 1, we obtain a new expression R′ such that R′ ≡ψ R.
2. If maxinv(R1) > 0, then R �|= ψ.

Proof.
1. It is obviously that M(R′

1) ⊂ M(R∗
1). Hence, by Lemma 4, for any model

σ′ ∈ M(R′), there exists model σ ∈ M(R) such that d(σ) = d(σ′) and
inv(σ) ≤ inv(σ′). By Lemmas 4 and 5, it follows that R |= ψ implies R′ |= ψ.
The other direction is proved as follows. By lemma 6, for any σ ∈ M(R)
such that d(σ) ≥ A there is σ′ ∈ M(R′) such that d(σ′) ≥ A and inv(σ′) ≥
inv(σ). Hence, as a result, R′ |= ψ implies R |= ψ.

2. Assume that maxinv(R1) > 0 and R∗
1 is not under ⊗. By induction on the

structure of R, it can be seen easily that for any subexpression R1 of R if
there exists a sequence of models σi ∈M(R1), i ≥ 1 such that lim inv(σi) =
∞, then there exists a sequence of models σ′

i ∈ M(R), i ≥ 1 such that
limi→∞ inv(σ′

i) =∞. Let w0 be the optimal solution of the linear program-
ming problem: max

∑
s∈S csds(R1) subject to C(R1). Let σ0 ∈M(R1) be the

model corresponding to w0 then inv(σ0) = maxinv(R1) > 0. Hence, for the
sequence σi = σ0

�σ0
�. . . �σ0 (i times), i ≥ 1, we have for all i, σi ∈ M(R∗

1)
and inv(σi) = i× inv(σ0)→∞ when i→∞. Since R∗

1 is a sub-expression of
R, we can construct a sequence of models σ′

i, i ≥ 1 such that σ′
i ∈ M(R) and

inv(σ′
i) → ∞ (when i → ∞). Hence, we can find a model σ ∈ R satisfying

that A ≤ d(σ) ≤ ∞ and inv(σ) > M . In the other words, R �|= ψ. #$

By Theorems 16, 17 and 18, we can remove a star in a TRE R without introducing
a new star, without increasing the number of stars under ⊗ for the following
cases:
– a star of the form R∗

1, where R1 is a simple TRE with m(R1) = 0 (Theo-
rem 16),

– a star of the form R∗
1, where R1 is a simple TRE with m(R1) > 0 for the

case that either M(R∗
1, R) or B is finite (Theorem 17),

– a star of the form R∗
1, where R1 is a simple TRE with m(R1) > 0 for the

case that B is infinite and R∗
1 is not under ⊗ (Theorem 18).

Therefore, if the linear duration ψ is of the form A ≤ � ≤ B ⇒
∑

s∈S cs

∫
s ≤M

for which B <∞ or if the TRE R has no sub-expression of the form R∗
1, where

R1 is a simple TRE with m(R1) > 0 and M(R∗
1, R) =∞, then checking R |= ψ

can be reduced to solving a finite number of linear programming problems.
As said earlier, what we still need to do in using this technique is to check

the emptiness of TRE’s. Checking the emptiness of a TRE in which the star does
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[a,~)
P

[b,~)

Monitor

AA BB CC

Controller

MDU
[0,c]

MUDn

Fig. 5. A Railroad Crossing Monitor. Transitions from AA to BB and from U to MD
are synchronised, and transitions from CC to P and from Dn to MU are synchronised.

not occur under ⊗ is so trivial. However, the problem becomes difficult when
the star occurs in the operands of a ⊗. Let for example

R = ((s1, [a1, b1])∗�(s2, [a2, b2])∗)⊗
((s3, [a3, b3])∗�(s4, [a4, b4])∗)

Replacing each star ∗ with an integral variable, we get

R =
⊕

m1,m2,m3,m4≥0

⎛

⎝
((s1, [a1, b1])m1�(s2, [a2, b2])m2)

⊗
((s3, [a3, b3])m3�(s4, [a4, b4])m4)

⎞

⎠ .

Thus, R is not empty iff the inequalities

m1a1 + m2a2 ≤ m3bb + m4b4

m3a3 + m4a4 ≤ m1b1 + m2b2

m1 ≥ 0, m2 ≥ 0, m3 ≥ 0, m4 ≥ 0

has an integral solution. In order to make the problem easier, we assume in this
section that all the real constants occurring in a TRE are rational. Thus, checking
the emptiness of TRE’s leads to checking the emptiness of {Ax ≤ b|x integral},
where A is a rational matrix, b is a rational vector, which is an integer linear
programming problem and can be solved in polynomial time.

For the TRE’s in which there are occurrences of the operator ∗ under ⊗ and
B =∞ in the LDI D, the problem is difficult, and we have to use mixed integer
linear programming techniques ([39,34]) to solve the problem.

Example 2. Let us take the railroad crossing system [66] as an example to illus-
trate the checking technique. We have trains, a railroad crossing monitor, and a
gate controller which are subject to the following constraints (see Figure 5).

1. The monitor has four states to express the positions of train: state AA for
train approaching beyond 1/2 mile, state BB for train approaching within
1/2 mile, state CC for train crossing, and state P for train just passed.

2. The controller has four states to express the positions of the gate: state U
for the gate being up, state MD for the gate moving down, state Dn for the
gate being down and MU for the gate moving up.
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When the system starts, the monitor is in state AA and the controller is in state
U . In state AA, when the monitor detects that a train approaching within 1/2
mile, it enters state BB, and at the same time if the controller is in state U or
state MU , it must enters state MD. Namely, when the gate is up or is moving
up, and detects that the monitor enters state BB, it must start moving down.
When the train enters the crossing, the monitor enters state CC, and when the
train has passed, it enters state P . When the monitor changes its state from CC
to P then at the same time the monitor changes its state from Dn to MU . This
means, when the gate is down, and detects that the monitor enters state P , it
begins to move up. In addition, due to the speed of trains and the safety distance
between trains, it takes at least a time units for a train to go to the crossing, after
entering state BB, and when a train has passed, a new train could come after at
least b time units. That means that the monitor stays in BB at least a time units
each time and in P at least b time units each time. Furthermore, assume that it
takes the gate at most c time units to move down, and hence, the controller stays
at MD at most c time units each time, where c ≤ a. The automata modelling
the railroad crossing system are depicted in Figure 5. Intuitively, the parallel
behaviour of the system is now can be described by the following TRE RCM :

(AA ⊗ U)�

(((BB, [a,∞))�CC ⊗ (MD, [0, c])�Dn)�

((P, [b,∞))�AA⊗ (MU�U ⊕MU)))∗ �

(ε ⊕
(BB ⊕ (BB, [a,∞))�CC)⊗ ((MD, [0, c])⊕ (MD, [0, c])�Dn)⊕
((BB, [a,∞))�CC ⊗ (MD, [0, c])�Dn)�

((P ⊕ P�AA)⊗ (MU ⊕MU�U)))

Now we verify that the railroad crossing monitor satisfies the requirement for
the system. That is to check RCM |= D, where D is 0 ≤ � ≤ ∞ ⇒

∫
CC −∫

Dn ≤ 0.
Because the subexpression under ∗ is not a simple one, in order to use Theorem

18, we transform RCM into the following expression RCM1 using Theorem 14:

RCM1 ≡ (AA⊗ U)�

(((BB, [a,∞))�CC ⊗ (MD, [0, c])�Dn)�

((P, [b,∞))�AA⊗MU�U))∗ �

(((BB, [a,∞))�CC ⊗ (MD, [0, c])�Dn)�

((P, [b,∞))�AA⊗MU))∗ �

(ε ⊕
(BB ⊕ (BB, [a,∞))�CC)⊗
((MD, [0, c])⊕ (MD, [0, c])�Dn)⊕

((BB, [a,∞))�CC ⊗ (MD, [0, c])�Dn)�

((P ⊕ P�AA)⊗ (MU ⊕MU�U)))
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Let
R1 = (((BB, [a,∞))�CC ⊗ (MD, [0, c])�Dn)�

((P, [b,∞))�AA⊗MU�U))
R2 = (((BB, [a,∞))�CC ⊗ (MD, [0, c])�Dn)�

((P, [b,∞))�AA⊗MU))

By Definition 7, m(R1) > 0 and m(R2) > 0. Furthermore,

maxinv(R1) = max{inv(σ)|σ ∈M(R1)}
= max{t2 − t4} subject to

a ≤ t1, 0 ≤ t2
0 ≤ t3 ≤ c, 0 ≤ t4
t1 + t2 = t3 + t4, b ≤ t5
0 ≤ t6, 0 ≤ t7
0 ≤ t8, t5 + t6 = t7 + t8

= c− a

Similarly, we have maxinv(R2) = c−a as well. Since c ≤ a, we have maxinv(R1)
≤ 0 and maxinv(R2) ≤ 0. By applying Theorem 18 twice with noticing that
k = 1, we have that RCM |= D is now equivalent to RCM2 |= D, where

RCM2 = (AA⊗ U)�

(ε⊕
(((BB, [a,∞))�CC ⊗ (MD, [0, c])�Dn)�

((P, [b,∞))�AA⊗MU�U)))�

(ε⊕
(((BB, [a,∞))�CC ⊗ (MD, [0, c])�Dn)�

((P, [b,∞))�AA⊗MU))) �

(ε ⊕
(BB ⊕ (BB, [a,∞))�CC) ⊗ ((MD, [0, c])⊕
(MD, [0, c])�Dn)⊕
(BB�CC ⊗ (MD, [0, c])�Dn)�

((P ⊕ P�AA)⊗ (MU ⊕MU�U)))

RCM2 is a finite TRE, and checking RCM2 |= D is so simple for this case
using Theorem 15. #$

For the class of real time systems whose behaviours are described by general
timed automata, if the constants occurring in the linear Duration Invariant are
integer, then checking can also be done by investigating the region graph of the
timed automaton modelling the system. Readers are referred to [38,65] for the
details of the technique.

8 A Case Study: Modeling and Verification of the
Bi-phase Mark Protocol in Duration Calculus

It is natural and convenient to model time as non-negative real numbers. How-
ever, during the development of a real-time computing system, we may have to
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use the set of natural numbers for time. This is specially true when dealing with
the implementation of the system in computer which running in discrete time.
In this section, we introduce some techniques for using Duration Calculus in
modelling and specification of some discrete time structures. These techniques
demonstrate how to use temporal propositional letters with specific meanings in
additional to state variables in modelling and specification. We then use these
techniques for modelling and verifying the correctness of the well-known case
study “Biphase Mark Protocol”.

For our convenience, we extend DC with the formula 

P ��0 that has been
introduced by Pandya in his early work [49]. The semantic for 

P ��0 is defined
by I, [a, b] |= 

P ��0 iff a = b and PI(a) = 1.

8.1 Discrete Duration Calculus Models

Recall that discrete models of Duration Calculus use the set of natural numbers
N, which is a subset of R

+, for time (we assume that 0 ∈ N). We can embed
the discrete time models into continuous time models by considering a state
variable in discrete DC models as a state in continuous models that can change
its value only at the integer points. For that purpose, we introduce several fresh
temporal propositional letters and state variables with specific meaning. Let int
be a temporal propositional letter with the meaning that int is interpreted as 1
for an interval if and only if the interval is from an integer to an integer, i.e. for
any interpretation I, intI([a, b]) = 1 iff a, b ∈ N. The axioms to characterise the
properties of the temporal propositional letter int can be given as follows. First,
the integer intervals have integral endpoints, and remain integer intervals when
extended by 1 time unit:

int⇒ ((int ∧ � = 0)�(int ∧ � = 1)∗) ∧
((int ∧ � = 1)∗�(int ∧ � = 0)) (6)

int�(� = 1)⇒ int (7)

Second, int ∧ � = 1 should be a unique partition of the greatest integral subin-
terval of any interval with length 2 or more, i.e.

� ≥ 2⇒ � < 1�((int ∧ � = 1)∗ ∧ (8)
¬(true�(int ∧ � = 1)�¬(int ∧ � = 1)∗) ∧
¬(¬(int ∧ � = 1)∗�(int ∧ � = 1)�true))�

� < 1

Similarly to Lemma 3.2 in [20] we can show that the axiom 8 is equivalent to the
fact that any interval [b, e] that have the length 2 or longer has the unique set
of time points b ≤ τ0 < τ1 < . . . < τm ≤ e such that I, [τi, τi+1] |= int ∧ � = 1,
τ0 − b < 1 and e − τm < 1, and [τi, τi+1] are the only subintervals of [b, e] that
that satisfy (int ∧ � = 1).

Let ID denote the set of these three axioms 6, 7 and 8. ID specifies all
the properties of integer intervals except that their endpoints are integer as
formulated by:
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Proposition 2. [31]

1. Let I be an interpretation satisfying that intI([b, e]) = true iff [b, e] is an
integer interval. Then I, [b, e] |= D for any integer interval [b.e], and for any
formula D ∈ ID.

2. Let I be an interpretation satisfying that I, [b, e] |= D for any interval [b.e],
and for any formula D ∈ ID. Then, intI([0, 0]) = true implies that for
intI([b, e]) = true iff [b, e] is an integer interval.

Proof. The item 1 is obvious, and we only give a proof of Item 2 here. Let us
consider an interval [0, n] with n > 100. From the fact that I, [0, n] |= D where
D is the formula 8, we have that there are points 0 ≤ τ0 < τ1 < . . . < τm ≤ e
such that I, [τi, τi+i] |= int ∧ � = 1, τ0 < 1 and n− τm < 1, and

I, [τ0, τm] |= (¬(true�(int ∧ � = 1)�¬(int ∧ � = 1)∗)∧
¬(¬(int ∧ � = 1)∗�(int ∧ � = 1)�true))

If τ0 > 0, from the axiom 7, it follows that I, [0, k] |= int for all k ∈ N and
k ≤ n and k < τk < k + 1. Applying the axiom 6 for the interval [0, k] implies
that I, [k, k + 1] |= int ∧ � = 1. Consequently, I, [m − 1, τm] |= ¬(int ∧ � = 1)∗

and I, [m − 2, m1] |= (int ∧ � = 1). This is a contradiction to I, [τ0, τm] |=
¬(true�(int ∧ � = 1)�¬(int ∧ � = 1)∗). #$

Note that Item 2 of Proposition 2 can be generalised as

Let I be an interpretation satisfying that I, [b, e] |= D for any inter-
val [b.e], and for any formula D ∈ ID. Let h ∈ R+, h < 1. Then,
intI([h, h]) = true implies that for intI([b, e]) = true iff [b, e] is of the
form [h + n, h + m], m, n ∈ N and n ≤ m.

So, ID is a set of formulas specifying the set of intervals of a discrete time
obtained by shifting N by h time units (h < 1).

Another way to express integer intervals is to use a state variable C be that
changes its value at each natural number which represents a tick of the real-time
clock, i.e. CI(t) = 1 iff �t� is odd.

The state variable C can also express if an interval is an integer interval.
Namely, we have

(

C�� ∨ 

¬C��) ∧ � = 1⇒ int
int ∧ � = 1⇒ (

C�� ∨ 

¬C��)


C���

¬C�� ⇒ true�int�true


¬C���

C�� ⇒ true�int�true
(int ∧ � = 1)�(int ∧ � = 1)⇒

((

C�� ∧ � = 1)�(

¬C�� ∧ � = 1))∨
((

¬C�� ∧ � = 1)�(

C�� ∧ � = 1))

Let CC denote the set of these formulas. CC specifies all the properties of the
special clock state variable C. Any interval satisfying int∧� > 0 can be expressed
precisely via a DC formula with state variable C (without int). Perhaps int∧� =
0 is the only formula that cannot be expressed by a formula via state variable
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C without int. CC can also be used as a means to define the variable C via int
and vice-versa. If we use CC to define int, the axioms for C simply are:



C�� ∨ 

¬C�� ⇒ � ≤ 1 (9)
((

C���

¬C���

C��) ∨ (

¬C���

C���

¬C��))⇒ � ≥ 1 (10)

The relationship between these axioms and the axioms for int presented earlier
is formulated as:

Proposition 3. [31] Let interpretation I be such that the formulas in CC and
axioms (6) and (7) are satisfied by all intervals.
1. If the axioms (9) and (10) are satisfied by all intervals, the axiom (8) is

satisfied by all intervals.
2. If the axiom (8) is satisfied by all intervals then the axioms (9) and (10) are

satisfied by all intervals, too.

Proof.
Proof of Item 1. The axioms (9) and (10) implies that the formula

(

¬P ���

P ���

¬P ��))⇒ (

¬P ���(

P �� ∧ � = 1)�

¬P ��))

is satisfied for any interval when P is either C or ¬C. For any interval [b, e],
if e − b ≥ 2 then there are b = τ0 < . . . < τn = e such that [τi, τi+1] satisfies


C�� ∨ 

¬C��, and τi, 0 < i < n are the points the state C changes its value.
Therefore, from (3), (4) and CC the formula int ∧ � = 1 is satisfied by [τi, τi+1]
when 0 < i < n − 1, and τ1 − τ0 < 1 and τn − τn−1 < 1. Furthermore, from
int ∧ � = 1⇒ (

C�� ∨ 

¬C��) it follows that [τi, τi+1], 0 < i < n− 1 are the only
intervals satisfying int ∧ � = 1. Hence, (8) is satisfied by [b, e].

Proof of Item 2. Let h > 0 be the first time point that state C changes its
value. From the axioms (6), (7) and (8) it follows that h ≤ 1 and int ∧ � = 1 is
satisfied by and only by the intervals of the form [n+h, n+1+h], n ∈ N. Hence,
if CC is satisfied by all intervals, the axioms (9) and (10) are also satisfied by all
intervals. #$

So, with the assumption that 0 is an integer point, the axioms (9) and (10) are
equivalent to the axiom (8).

Let step be a temporal propositional letter that represents two consecutive
state changes of the system under consideration. When there are several state
changes at a time point t, step evaluates to 1 over interval [t, t]. When two
consecutive state changes are at t and t′ such that t �= t′, step is true for the
interval [t, t′], and for any state variable P , either 

P �� or 

¬P �� holds for the
interval [t, t′]. This is represented by:

step ∧ � > 0⇒ (

P �� ∨ 

¬P ��) for any state variable P
step ∧ � > 0⇒ ¬((step ∧ � > 0)�(step ∧ � > 0))

Let SC denote this class of formulas.
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Now consider two kinds of Duration Calculus semantics which are different
from the original one defined earlier for continuous time, and called discrete
semantics and discrete step time semantics.

Discrete Duration Calculus semantics are defined in the same way as for con-
tinuous time semantics except that all intervals are integer intervals. So, a, b, m
and mi in the definition should be integers instead of reals, and an interpretation
I should assign to each state variable P a function from N to {0, 1}, and then
expanded to a function from R+ to {0, 1} by letting IP (t) = IP (�t�) which is
right continuous, and could be discontinuous only at integer time points. Let us
use |=DDC to denote the modelling relation in these semantics.

Similarly, discrete step time Duration Calculus semantics are defined by re-
stricting the set of intervals to that of intervals between state change time points.
So, a, b, m and mi in the definition should be time points where states change,
and an interpretation I should assign to each state variable P a function from
S to {0, 1}, where S is a countable subset of R+ intended to be the set of
time points for state changes that includes the set N. IP is then expanded to
a function from R+ to {0, 1} by letting IP (t) = IP (ts), where t ∈ R+ and
ts = max{t′ ∈ S | t′ ≤ t}. Then IP (t) is also right continuous, and could be
discontinuous only at a point in S. Let us use |=SDC to denote the modelling
relation in this semantics.

To express that states are interpreted as right continuous functions, we can
use formula called RC



P �� ⇒ 

P ��0�

P �� for any state variable P

In [48], Pandya also proposed a semantics using only the intervals of the form
[0, t]. This semantics is often used in model checking when only the properties in
the intervals of that form is specified, and we have to check if an automata model
of the system satisfied those properties during its life. We can also specify this
interval model with a temporal propositional letter Pre. Pre is interpreted as
true only for the interval of the form [0, t]. Pre is specified by the set of formulas
Pref defined as

Pre�true⇒ Pre
¬(� > 0�Pre)
Pre ∧D ⇒ (Pre ∧ � = 0)�D
Pre ∧ (D1�D2)⇒ (Pre ∧D1)�D2

Proposition 4. [31] Let I be an interpretation that validates the set of formulas
Pref and I, [0, 0] |= Pre. Then, I,V , [a, b] |= Pre iff a = 0.

Proof. Straightforward #$

Then, a formula D is valid in the prefix time interval model if and only if Pre⇒
D is a valid formula in the original model of time interval.

So far, we have introduced special temporal propositional letters int, step and
Pre together with DC formulas specifying their special features. We are going to
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show that with these propositional letters we can provide a complete description
of many useful time models.

Integer Time Model. To specify that a state can only change at an integer time
point, we can use the formula IS:

step⇒ int

Let DL be the union of SC, IS, ID, RC. DL forms a relative complete
specification for the discrete time structure. Let ϕ be a formula which does not
have any occurrence of temporal variables int ans step. Let intemb(ϕ) be a
formula that obtained from ϕ by replacing each proper subformula ψ of ϕ by
ψ ∧ int. For example intemb(φ�¬ψ) = (φ ∧ int)�(int ∧ ¬(ψ ∧ int).

Theorem 19. [31] Let ϕ be a DC formula with no occurrence of temporal propo-
sition letters. Then, DL � int⇒ intemb(ϕ) exactly when |=DDC ϕ.

Proof. Any discrete time model I, [a, b] can be extended to a model that satisfies
the formulas in DL in the obvious way, namely with the interpretation for int
and step with the intended meanings for them. By induction on the structure
of the formula ϕ, it is easy to prove that I, [a, b] |=DDC ϕ if and only I, [a, b] |=
intemb(ϕ).

Then, the “only if” part follows directly from the soundness of the proof of
the DC system that intemb(ϕ) is satisfied by any integer model that satisfies
DL.

The “if” part is proved as follows. From the above observation, if |=DDC

ϕ then int ⇒ intemb(ϕ) is a valid formula in DC with the assumption DL.
Consequently, from the relative completeness of DC, intemb(ϕ) is provable in
DC with the assumption DL. #$

Discrete Step Time Model. As it was said earlier, a discrete step time model
consists of all time points at which there is a the state change. Since we have
assumed that the special state variable C for the clock ticks is present in our
system that changes its value at every integer point, this model of time should
also include the set of natural numbers. This is the reason that we include N as
a subset of S. This time model was defined and used by Pandya et al in [48].
To represent a time point in this model, we introduce a temporal propositional
letter pt, pt holds for an interval [t, t′] iff t = t′ and t is a time point at which
there is a state change. pt should satisfy:

pt⇒ � = 0
step⇒ pt�true�pt
int⇒ pt�true�pt
int⇒ pt�step∗

Let DP denote this set of formulas. The last formula in this set expresses our
assumption that no Zeno computation is allowed, i.e. in any time interval, there
are only a finite number of state changes. Let us define a DC formula dis as

dis =̂ (pt�true�pt)
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dis represents an interval between two discrete points. When considering the
Discrete Step Time Models, the chop point should satisfy pt.

The sublanguage DSL, which is the union of SC, ID, CC, DP DC and RC,
forms a relatively complete specification for the discrete time structure.

Let disemb(ϕ) be a formula that is obtained from ϕ by replacing each proper
subformula ψ of ϕ by ψ ∧ dis. For example disemb(φ�¬ψ) = (φ ∧ dis)�(dis ∧
¬(ψ ∧ dis).

Theorem 20. [31] Let ϕ be a DC formula with no occurrence of temporal propo-
sition letters. Then, DSL � dis⇒ disemb(ϕ) exactly |=SDC ϕ.

Proof. The proof works in exactly the same way as the proof of Theorem 19.
Any discrete step time model I, [a, b] can be extended to a model that satisfies

formulas in DL in the obvious way, namely with the interpretation for int and
step with the intended meanings for them. By induction on the structure of
the formula ϕ, it is easy to prove that I, [a, b] |=SDC ϕ if and only I, [a, b] |=
intemb(ϕ).

Then, the “only if” part follows directly from the soundness of the proof of
the DC system that intemb(ϕ) is satisfied by any discrete step time model that
satisfies DL.

For the “if” part, notice that if |=SDC ϕ then dis ⇒ intemb(ϕ) is a valid
formula in DC with the assumption DL. Consequently, from the relative com-
pleteness of DC, disemb(ϕ) is provable in DC with the assumption DL. #$

Sampling Time Models. A sampling time model consists of the time points where
we sample the data. Assume that the samplings are frequent enough and that
any state change should be at a sampling point. To specify this time model, we
can use DSL and an additional assumption

step⇒ � = 1/h

where h ∈ N, h > 0, i.e. 1/h is the sampling time step. Let SLh be the language
for the sampling time model with the sampling time step 1/h.

8.2 Specifying Sampling, Periodic Task Systems

Sampling. Sampling and specifying periodic task systems are immediate ap-
plications of the results presented in the previous section.

We have built a language for sampling time models based on the continuous
time DC. Hence, we can use the proof system of DC to reason about validity of a
formula in that time and state model. How to relate the validity of a formula D
in that time and state model with the validity of a formula D′ in the original DC?
In our early work [35], we have considered that relation, but had to formulate the
results in a natural meta language due to the use of different semantic models.
With the help from the time modeling language, we can also formulate the
relationship as formulas in DC.

Let P be a state variable. Let Ph be a state in the sampling time model with
the sampling time step 1/h such that Ph is interpreted the same as P at any
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sampling time point, i.e. �(pt ⇒ (

P ��0 ⇔ 

Ph��0) (denoted by samp(P, Ph)),
and �(step ∧ � > 0 ⇒ (

Ph�� ∨ 

¬Ph��)) (denoted by dig(Ph)). Let stable(P, d)
denote the formula �((

¬P ���

P ���

¬P ��)⇒ � ≥ d).

Theorem 21. Let d > 1/h. The following formulas are valid in DC:

1. (stable(P, d) ∧ samp(P, Ph) ∧ dig(Ph))⇒
(
∫

P = m⇒ |
∫

Ph −m| ≤ min{�, (�/d + 1)1/h}

2. (stable(P, d) ∧ samp(P, Ph) ∧ dig(Ph))⇒
(
∫

P = m ∧ dis)⇒ |
∫

Ph −m| ≤ min{�, 1/h�/d}

3. (stable(P, d) ∧ samp(P, Ph) ∧ dig(Ph))⇒∫
Ph = m⇒ |

∫
P −m| ≤ (�/d + 1)1/h

4. (stable(P, d) ∧ samp(P, Ph) ∧ dig(Ph))⇒∫
Ph < m⇒

∫
P < m + 1/h(�/d + 1)

5. (stable(P, d) ∧ samp(P, Ph) ∧ dig(Ph))⇒∫
P < m⇒

∫
Ph < m + 1/h(�/d + 1)

6. (stable(P, d) ∧ samp(P, Ph) ∧ dig(Ph))⇒∫
Ph > m⇒

∫
P > m− 1/h(�/d + 1)

7. (stable(P, d) ∧ samp(P, Ph) ∧ dig(Ph))⇒∫
P > m⇒

∫
Ph > m− 1/h(�/d + 1)

8. (stable(P, d) ∧ samp(P, Ph) ∧ dig(Ph))⇒
dis⇒ (

Ph�� ⇔ 

P ��)

Proof. This is just a reformulation of Theorem 1 in [35]. #$

This theorem is useful for deriving a valid formula in the original DC from
valid formulas in discrete time model. It can be used in approximate reasoning,
especially in model checking: to check if a system S satisfies a DC property D, we
can check a sampling system Sh of S whether it satisfies a discrete DC property
Dh. Dh is found such that Sh |= Dh implies S |= D. This technique has been
used in [48].

Periodic Task System. Now we return to the scheduler mentioned in the
introduction of the paper. Recall that a periodic task system T consists of n
processes {1, . . . , n}. Each process i raises its request periodically with period
Ti, and for each period it requests a constant amount of processor time Ci. A
specification of system T in DC has been given in many works, see e.g [70], which
assume that all the processes raise their request at time 0. Now we can give a
complete specification of the system without this assumption using the same
technique that was introduced for temporal variable int in the previous section.
To specify periodic behaviour of process i, we also use temporal variable dLine i
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as in [70] whose behavior is similar to temporal variable int, and specified by:

dLine i⇒ ((dLine i ∧ � = 0)�(dLine i ∧ � = Ti)∗) ∧ (11)
((dLine i ∧ � = Ti)∗�(dLine i ∧ � = 0))

dLine i�(� = Ti)⇒ dLinei (12)
� ≥ 2Ti ⇒ � < Ti

�((dLine i ∧ � = Ti)∗ ∧ (13)
¬(true�(dLine i ∧ � = Ti)�¬(dLine i ∧ � = Ti)∗) ∧
¬(¬(dLine i ∧ � = Ti)∗�(dLine i ∧ � = Ti)�true))�

� < Ti

Let Runi be a state variable saying that process i is running on the processor, i.e.
Runi(t) = 1 if process i is running on the processor, and Runi(t) = 0 otherwise.
Let Standi be a state variable saying that the current request of process i has
not been fulfilled. The behaviour of process i is fully specified by the following
formula Bi:

dLine i ∧ � = Ti ⇒ (((
∫

Runi < Ci ⇔ 

Standi��)�true)∧
(
∫

Runi = Ci
�� > 0⇒

∫
Runi = Ci

�

¬Standi��))

The requirement REQ of system T is simply specified by:

∧i≤ndLine i ∧ � = Ti ⇒
∫

Runi = Ci

Denote by PERIOD the conjunction of formulas 11, 12 and 13. PERIOD
forms a complete specification of temporal propositional variables dLinei, i ≤ n,
and are useful in proving the correctness of a scheduler for system T .

A priority-based scheduler S for system T with single processor is charac-
terised by state variables HiPriij (i, j ≤ n, i �= j) which specify the dynamic
priority among the processes defined by S, and the following state formulas
characterising its behaviour:

∧i	=j((Runi ∧ Standj) => HiPriij)
∧i≤n(Runi => Standi)
∧i	=j(HiPriij ⇒ ¬HiPriji)
∧i	=j¬(Runi ∧Runj)
∨i≤nStandi ⇒ ∨i≤nRuni

The first formula says that a standby process j is not running because there
is a process i with higher priority is running. The second formulas says that
only standby process can run, the third formula characterises that the priority
relation is totally defined, and the last formula specifies that only if there is a
standby process then at least one process should be running. Let SCH denote
the conjunction of these five formulas.

Deadline driven scheduler is a priority-based scheduler that considers process i
to have a higher priority than process j (i.e. the value of HiPriij at the current
time point is 1) iff the deadline for process i is nearer than the deadline for



A Theory of Duration Calculus with Application 167

sent signal

Sender

encode

Receiver clock

Receiver

Digitizing

received signal

decode

Bus

Fig. 6. Communication Protocol Model

process j. The deadline driven scheduler can be modelled with the additional
formula specifying the behaviour of state variables HiPriij (i, j ≤ n):

∧i	=j

HiPriij���� = Ti ⇒ (¬�dLinej)�dLinei
�true

Denote this formula by DDS. The interesting thing here is that variables HiPriij
can be defined in DC, without any quantification on rigid variables, via temporal
propositional variables dLinei (i ≤ n) which are completely specified by formu-
las 11, 12 and 13. Note that with defining HiPriij in this way, we don’t have
to assume that all the processes raise their request at time 0. Hence, reasoning
about the correctness of the scheduler for the general case can be done with the
proof system of DC. For example, the correctness of deadline-driven scheduler
(included in Liu and Layland’s Theorem for the feasibility of the deadline-driven
scheduler) is formalised as:

{PERIOD,∧i≤nBi, SCH, DDS,
∑

i≤n(Ci/Ti) ≤ 1} |= REQ

This can be proved by using the proof system of DC.

8.3 Modelling Communication Protocols with Digitizing in DC

In this section, we show that with discrete time structure formalised, we can
model communication protocols using Duration Calculus (DC) in a very conve-
nient way without any extension for digitising. This model has been presented
in our earlier work [32,33]. Consider a model for communication at the physical
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layer (see Fig. 6). A sender and a receiver are connected via a bus. Their clocks
are running at different rates. We refer to the clock of the receiver as the time
reference. The receiver receives signals by digitising. Since the signals sent by
the sender and the signals received by the receiver are functions from the set R

+

to {0, 1} (1 represents that the signal is high, and 0 represents that the signal is
low), we can model them as state variables in DC.

The communication protocols are modelled in DC as follows. The signal sent
by the sender is modelled by a state X . The signal received by the receiver by
sampling the signal on the bus is modelled by a state Y in the sampling time
model with the sampling time step 1. So, step⇔ int ∧ � = 1. However, it is not
the case that samp(X, Y ) due to the fact that it takes a significant amount of
time to change the signal on the bus from high to low or vice-versa, and hence,
the signal on the bus cannot be represented by a Boolean function. Without loss
of generality, assume that the delay between the sender and the receiver is 0.
Assume also that when the signal on the bus is neither high nor low, the receiver
will choose an arbitrary value from {0, 1} for the value of Y . The phenomenon
is depicted in Fig. 7. Assume that it takes r (r is a natural number) receiver-
clock cycles for the sender to change the signal on the bus from high to low
or vice-versa. Then if the sender changes the signal from low to high or from
high to low, the receiver’s signal will be unreliable for r cycles starting from the
last tick of the receiver clock and during this period it can be any value chosen
nondeterministically from 0 and 1. Otherwise, the signal received by the receiver
is the same as the signal sent by the sender (see Figure 7). This relationship
between X and Y is formalised as

(

X�� ∧ (� ≥ r + 1))⇒ (� ≤ r)�(

Y �� ∧ int)�(� < 1) ,
(

¬X�� ∧ (� ≥ r + 1))⇒ (� ≤ r)�(

¬Y �� ∧ int)�(� < 1) .

Since the behaviour of a state can be specified by a DC formula, a commu-
nication protocol can be modelled as consisting of a coding function f , which
maps a sequence of bits to a DC formula expressing the behaviour of X , and a
decoding function g, which maps a DC formula expressing the behaviour of Y
to a sequence of bits. The protocol is correct iff for any sequence w of bits, if
the sender puts the signal represented by f(w) on the bus then by digitising the
receiver must receive and receives only the signals represented by a DC formula
D for which g(D) = w.

8.4 Biphase Mark Protocols

In the Biphase Mark Protocols (BMP) the sender encodes a bit as a cell con-
sisting of a mark subcell of length b and a code subcell of length a. The sender
keeps the signal stable in each subcell (hence either 

X�� or 

¬X�� holds for the
interval representing a subcell). For a cell, if the signal in the mark subcell is
the same as the signal in the code subcell, the information carried by the cell is
0; otherwise, the information carried by the cell is 1. There is a phase reverse
between two consecutive cells. This means that, for a cell, the signal of the mark
subcell of the following cell is held as the negation of the signal of the code
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subcell of the cell. The receiver, on detecting a state change (of Y ), knows that
it is the beginning of a cell, and skips d cycles (called the sampling distance)
and samples the signal. If the sampled signal is the same as the signal at the
beginning of the cell, it decodes the cell as 0; otherwise it decodes the cell as 1.

At the beginning of the transmission, the signal is low for a cycles (this means,


¬X�� holds for the interval of length a starting from the beginning). When the
sender finishes sending, it keeps the signal stable for cc time units which is longer
than the code subcell. We use HLS, LHS to denote the formulas representing
intervals consisting of the code subcell of a cell and the mark subcell of the next
one for the sender, and use HLR�(� = d), LHR�(� = d) to denote the formulas
representing the intervals between the two consecutive sampling points (from the
time the receiver samples the signal of a code subcell to the next one. Formally,

HLS =̂ (

X�� ∧ � = a)�(

¬X�� ∧ � = b) ,
LHS =̂ (

¬X�� ∧ � = a)�(

X�� ∧ � = b) ,
HLR =̂ (

Y �� ∧ int ∧ 1 ≤ � ≤ ρ)�(

¬Y �� ∧ � = 1) ,
LHR =̂ (

¬Y �� ∧ int ∧ 1 ≤ � ≤ ρ)�(

Y �� ∧ � = 1) .

Now, we are ready to formalise the BMP in DC. What we have to do is write
down the encoding function f and the decoding function g. From the informal
description of the protocol, we can define f inductively as follows.

1. f(ε) =̂ (

¬X�� ∧ � = c)
2. If f(w) = D�(

X�� ∧ � = c), then

f(w0) =̂ D�HLS�(

¬X�� ∧ � = c)
f(w1) =̂ D�HLS�(

X�� ∧ � = c)
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3. If f(w) = D�(

¬X�� ∧ � = c), then

f(w0) =̂ D�LHS�(

X�� ∧ � = c)
f(w1) =̂ D�LHS�(

¬X�� ∧ � = c)

For example, f(1) = LHS�(

¬X��∧� = c), f(10) = LHS�LHS�(

X��∧� = c),
and f(101) = LHS�LHS�HLS�(

X�� ∧ � = c).

Because the decoding function g is a partial function, we have to describe its
domain first, i.e. what kind of DC formulas on the state Y are detected (received)
by the receiver. According to the behaviour of the receiver, first it skips r cycles.
Then it begins to scan for an edge (HLR or LHR). When an edge is detected,
it skips d cycles and repeats this procedure until it detects that the transmission
has completed (Y is stable for more than ρ cycles). Thus, a DC formula D is
received by the receiver iff D is of the form A0

�A1
�. . . �An, n ≥ 1, where

– A0 = (1 ≥ � ∧ � > 0)�(int ∧ (� = r − 1)))
– and either An = (int ∧ 

Y �� ∧ (� > ρ))�(� < 1)),

or An = (int ∧ 

¬Y �� ∧ (� > ρ))�(� < 1))
– and for j = 1, . . . , n− 1 either Aj = LHR�(� = d) or Aj = HLR�(� = d)
– and if n = 1 then An = (int ∧ 

¬Y �� ∧ (� > ρ))�(� < 1)) and if n > 1 then

A1 = LHR�(� = d) (since at the beginning the signal is low).

Now, the decoding function g can be written as follows. Let D be a formula
received by the receiver.

– If D = (� ≤ 1 ∧ � > 0)�(int ∧ � = r − 1)�(

¬Y �� ∧ � > ρ ∧ int)�� < 1 then
g(D) = ε.

– Let g(D) be defined.

• If D = D′�(

Y �� ∧ int ∧ � ≥ ρ)�� < 1 then
g(D′�HLR�(� = d)�(

Y �� ∧ int ∧ � ≥ ρ)�� < 1) = g(D)1 , and
g(D′�HLR�(� = d)�(

¬Y �� ∧ int ∧ � ≥ ρ)�� < 1) = g(D)0 .
• If D = D′�(

¬Y �� ∧ int ∧ � ≥ ρ)�� < 1, then

g(D′�LHR�(� = d)�(

Y �� ∧ int ∧ � ≥ ρ)�� < 1) = g(D)0 , and
g(D′�LHR�(� = d)�(

¬Y �� ∧ int ∧ � ≥ ρ)�� < 1) = g(D)1.

For example, let D be (� ≤ 1∧� > 0)�(int∧� = r−1)�LHR�(� = d)�LHR�(� =
d)�HLR�(� = d)�(

Y �� ∧ � > ρ ∧ int)�(� < 1)). Then,

g(D) = g((� ≤ 1 ∧ � > 0)�(int ∧ � = r − 1)�LHR�(� = d)
�LHR�(� = d)�(

Y �� ∧ � > ρ ∧ int)�(� < 1)) 1

= g((� ≤ 1 ∧ � > 0)�(int ∧ � = r − 1)�LHR�(� = d)�

(

¬Y �� ∧ � > ρ ∧ int)�(� < 1)) 01
= g((� ≤ 1 ∧ � > 0)�(int ∧ � = r − 1)

�(

¬Y �� ∧ � > ρ ∧ int)�(� < 1)) 101
= ε101 .
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8.5 Verification of BMP

As said earlier, we have to verify that for any sequence of bits w, if the sender
puts on the bus the signal represented by DC formula f(w), then the receiver
must receive and receives only the signals represented by a DC formula D for
which g(D) = w. We can only prove this requirement with some condition on
the values of the parameter r, a, b, c, ρ and d. The requirement is formalised as:

For all sequence of bits w,
– there exists a DC formula D received by the receiver such that f(w) ⇒ D,

and
– for all D receivable by the receiver, if f(w)⇒ D then g(D) = w.
Since in BMP g is a deterministic function, for any sequence of bits w there is

no more than one receivable formula D for which f(w)⇒ D. Thus we can have
a stronger requirement which is formalised as:

For all sequences of bits w there exists uniquely a receivable formula D such
that f(w)⇒ D and g(D) = w.

Our verification is done by proving the following two theorems.

Theorem 22. [31] For any receivable formulas D and D′, if D is different from
D′ syntactically then |= ((D ∧D′)⇒ ff).

This theorem says that each time at most one receivable formula D is received
by the receiver.

Theorem 23. [31] Assume that r ≥ 1, b ≥ r+1, a ≥ r+1, c ≥ ρ+a, d ≥ b+r,
d ≤ a + b− 3− r, and ρ ≥ a + 1. Then for any sequence of bits w there exists a
receivable formula D for which f(w)⇒ D and g(D) = w.

In [33] we proved these two theorems, with PVS proof checker, with the encoding
of the proof system for Duration Calculus.

We have seen in this section that by using temporal propositional letters we
can specify many classes of time models that are suitable for our applications.
The properties of the introduced temporal propositional letters are then speci-
fied by a class of Duration Calculus formulas. Using this class of formulas and
the proof system of the original Duration Calculus we can reason about the
behaviour of our real-time systems in different time domains.

9 Conclusion

We have presented in this chapter a theory of Duration Calculus with applica-
tions. This theory contains the main components of the calculus such as its syn-
tax, semantics and proof system. We also present some extensions of DC which
are convenient for specification and give more expressive power to DC. We give
a brief summary of the decidability and undecidability results and present some
techniques for doing model-check for a sub-class of the calculus that have been
published in the literatures, and for specifying real-time properties of computing
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systems via some well-known examples. The materials presented in this chapter
is fundamental for researching and practicing in Duration Calculus. The research
in this area is on the way, and we believe that many newly developed results in
Duration Calculus are not covered in this chapter.
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Understanding Programming Language

Concepts Via Operational Semantics
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Abstract. The origins of “formal methods” lie partly in language de-
scription (although applications of methods like VDM, RAISE or B to ar-
eas other than programming languages are probably more widely known).
This paper revisits the language description task but uses operational
(rather than denotational) semantics to illustrate that the crucial idea
is thinking about an abstract model of something that one is trying to
understand or design. A “story” is told which links together some of the
more important concepts in programming languages and thus illustrates
how formal semantics deepens our understanding.

1 Introduction

One objective of this paper is to show how the concept of “abstract modelling”
of any computer system applies to programming languages. The position taken
is that a description of the semantics of such a language can not only aid under-
standing but can also be used to design a language which is likely to satisfy the
needs of both users and compiler writers.

Computers are normally programmed in “high-level” (programming) lan-
guages (HLLs). Two important problems are

1. the correctness of programs (i.e. whether or not a program satisfies its spec-
ification) written in such a language; and

2. the correctness of the compiler that translates “source programs” into “ob-
ject programs” (in “machine code”).

At the root of both of these problems is the far more important issue of the
design of the high-level language itself.

The designer of a programming language faces several engineering challenges
— one balance that must be sought is the “level” of the language: too low a
level of language increases the work of every programmer who writes programs
in that language; too high a level (far from the realities of the machines on which
the object programs will run) and not only is the compiler writer’s task harder
but it is also likely that any compiler will produce less efficient code than a
programmer with closer access to the machine. A badly designed language will
impair the effectiveness of both user and implementer.

The essence of what this paper addresses is the modelling of concepts in pro-
gramming languages based on the firm conviction that most language issues can

C. George, Z. Liu, and J. Woodcock (Eds.): Domain Modeling, LNCS 4710, pp. 177–235, 2007.
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–and should– be thought out in terms of a semantic model long before the task
of designing a complier is undertaken.

A thread –partly historical– through some of the more important concepts of
programming languages is created. Little time is spent on details of the (concrete)
syntax of how a concept is expressed in one or another programming language.
The interest here is in concepts like “strong typing”, the need for –and support
of– abstract types, ways of composing programs and documenting interfaces to
components, modes of parameter passing, constraining “side-effects”, deciding
where to allow non-determinacy, the need for files/databases, the (lack of) inte-
gration of database access languages into programming languages, and the role
of objects. A particular emphasis is on issues relating to concurrency.

The main focus is not, however, on the specific features selected for study; it is
the modelling concept which is promoted. Modelling tools like “environments”,
choosing a “small state” and (above all) abstraction are taught by application.
The interest here is in modelling — not in theory for its own sake. The meth-
ods can be applied to almost any language. They are not limited to the specific
language features discussed here — but an attempt has been made to provide
a “thread” through those features chosen. Indeed, another objective of the pa-
per is to show relationships between language concepts that are often treated
separately.

This paper uses VDM notation for objects/functions etc. — the choice is
not important and the material could be presented in other notations. The
story of the move from VDL [LW69] to VDM [BBH+74, BJ78, BJ82] is told
in [Jon01b]. This author’s decision to move back to operational semantics is
justified in [Jon03b].

1.1 Natural vs. Artificial Languages

The distinction between natural and formal languages is important. All humans
use languages when they speak and write “prose” (or poetry). These “natural”
languages have evolved and each generation of humans pushes the evolution
(if not “development”) further. The natural language in which this paper is
written incorporates ideas and words from the languages of the many invaders
of “England”.1

In contrast to the evolving natural languages, humans have designed formal or
artificial languages to communicate with computers. Different though the history
–and objectives– of natural and formal languages are, there are ideas in common
in the way one can study languages in either class.

The languages that are spoken by human beings were not designed by com-
mittee; they just evolved2 — and they continue to change. The evolution process
is all too obvious from the irregularities in natural languages. The task of de-
scribing natural languages is therefore very challenging but, because they have
been around longer, it is precisely with natural languages that one first finds a
1 No slight to the rest of the United Kingdom – just to make the link to “English”

which is the name of our common language.
2 Of course, there are a small number of exceptions like Volapük and Esperanto.
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systematic study. Charles Sanders Peirce (1839-1914) used the term “Semiotics”.
Crucially, he divided the study the study of languages into:

– syntax: structure
– semantics: meaning
– pragmatics: intention

Heinz Zemanek applied the terminology to programming languages in [Zem66].
It is not difficult to write syntax rules for parts of natural languages but

because of their irregularity, a complete syntax is probably not a sensible
objective.

It is far harder to give a semantics to a language (than to write syntactic rules).
If one knows a language, another language might be explained by translating it
into the known language (although nuances and beauty might be lost).

Within one language, a dictionary is used to give the meanings of words. But
there is clearly a danger of an infinite loop here.

1.2 Formal Languages

People designed “formal” (or artificial) languages long before computers existed
(a relevant example is Boole’s logic [Boo54]); but the main focus here is on
languages used to communicate with (mostly – program) computers. These lan-
guages are “formal” because they are designed (often by committees); the term
artificial is used to emphasize the distinction from the evolutionary process that
gives us “natural languages”.

When digital computers were first programmed, it was by writing instruc-
tions in the code of the machine (indeed, in the world’s first “stored program
electronic computer” –the Manchester “Baby”– (1948), the program was in-
serted in binary via switches). Assembler programs gave some level of con-
venience/abstraction (e.g. offering names for instructions; later, allocating
addresses for variables).

FORTRAN (“formula translator”) is generally credited as the first successful
programming language. It was conceived in the early 1950s and offered a number
of conveniences (and some confusions) to people wanting to have a computer
perform numerical computations.

The creation of FORTRAN led to the need for a translator (or compiler).
The first such was built by an IBM team led by John Backus (1924–2007) in
1954–57.

There is an enormous number of high-level programming languages.3 Jean
Sammet wrote a book on “500 Programming Languages” but gave up trying
to update it; a very useful history of the main languages is [Wex81]. I take
the position that existing languages are mostly poor and sometimes disastrous!
Just think for a minute about how many billions of pounds have been wasted by

3 Some interesting points along the history of “imperative” languages are FORTRAN,
COMTRAN, COBOL, ALGOL 60, ALGOL W, PL/I, Pascal, Simula, CPL, Modula
(1, 2 and 3), BCPL, C, C++, Eiffel, Java and Csharp.
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programs that can index outside the limits of a “stack”. It is clear that these
imperative4 languages are crucial in the effective use of computers.5

– few encourage clear expression of ideas
– almost all offer gratuitous traps for the unwary
– almost none maximize the cases where a static process (compilation) can

detect errors in programs

Apart from programming languages, there are many other classes of artifi-
cial languages associated with computers including those for databases. So one
can see readily that there is an enormous advantage in designing good
languages.

1.3 Goals of This Paper

Engineers use models to understand things before they build them. The essence
of a model is that it abstracts away from detail that might be irrelevant and
facilitates focus on some specific aspect of the system under discussion.

It is possible to design a language by writing a compiler for that language but
it is likely –even for a small language– to be a wasteful exercise because the writer
of a compiler has to work at a level of detail that prevents seeing “the wood for
the trees”. It might be slightly easier to start by writing an interpreter for the
language being designed but this still requires a mass of detail to be addressed
and actually introduces a specific technical danger (lack of static checking) that
is discussed in more detail in Section 2.2.

In fact, many languages have been designed by a mixture of writing down
example programs and sketching how they might be translated (it is made clear
above that language design requires that engineering trade-offs are made between
ease of expression and ease of translation). But in many cases, the first formal
manifestation of a language has been its (first) compiler or interpreter.

The idea of writing a formal (syntax or) semantics is to model the language
without getting involved in the detail of translation to some specific machine
code. With a short document one can experiment with options. If that document
is in some useful sense “formal” one can reason about the consequences of a
language design.

A repeated “leitmotiv” of this paper is the need to abstract. In fact, the sim-
plest semantic descriptions will be just abstract interpreters: the first descriptions
in Section 3 are interpreters that are made easier to write because they abstract
from much irrelevant detail. Even the syntax descriptions chosen in Section 2 are
abstract in the sense that they (constructively) ignore many details of parsing
etc.

4 As the qualification “imperative” suggests, there are other classes of HLLs. This
paper mostly ignores “functional” and “logic” programming languages here.

5 This author was on a panel on the history of languages and semantics in CMU during
2004; Vaughan Pratt asked: “(i) how much money have high-level programming
languages saved the world? (ii) is there a Nobel prize in economics for answering
part (i)?”.
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1.4 A Little History

The history of research on program verification is outlined in [Jon03a] (a slightly
extended TR version is also available [Jon01a]) but that paper barely mentions
the equally interesting story about research on the semantics of programming
languages.6 Some material which relates directly to the current paper can be
found in [Jon01b, Plo04a].

There are different approaches to describing the semantics of programming
languages. It is common practice to list three approaches but there are actually
four and it is, perhaps, useful to split the approaches into two groups:
– model oriented
– implicit

Model-oriented approaches build a more-or-less explicit model of the state of the
program; these approaches can be further divided into
– operational
– denotational

This paper emphasizes the operational semantics approach. Any operational
approach can be compared with the task of interpreting the language in question.
This comparison is very clear in Section 3 below but is also the essence of the
generalization explained in Section 3.1 (and applied to more language features in
Sections 4–4.5). The denotational approach is akin to translating one language
into another and is discussed further in Section 7.

Many authors equate “implicit” language descriptions with “axiomatic se-
mantics” but it is actually worth also dividing this class of descriptions into
– axiomatic
– equivalences

Axiomatic descriptions provide a way of reasoning about programs written in
a language; these approaches –and the link to model-oriented semantics– are
discussed in Section 7. The idea of characterizing a programming language by
equivalence laws goes back to the 1960s but is achieving more notice again in
recent years.

McCarthy’s paper [McC66] at the 1964 Baden-bei-Wien conference was a key
step in the development of ideas on describing a language by way of an “abstract
interpreter”. His paper was one of the major influences on VDL [LW69]. Interest-
ingly, McCarthy also introduced a notion of “abstract syntax” in that same paper.

There are many useful texts [Gor79, Gor88, Hen90, NN92, Win93]; books
which also look at implementation aspects include [Rey98, Sco00, Wat04].

2 Delimiting the Language to Be Defined

The ultimate interest here is in describing (or designing) the semantics of pro-
gramming languages. Before one can describe a language, one needs to know
6 There is a wealth of source material all the way from [Ste66] to recent events

organized under the aegis of the (UK) “Computer Conservation Society” — see
http://vmoc.museophile.org/pvs01 and http://vmoc.museophile.org/pvs04
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what are its valid “texts”. The concern with the content (as opposed to the
meaning) of a language is termed syntax. In general, there will be an infinite
number of possible “utterances” in any interesting language so they cannot be
simply enumerated. Consequently a syntactic description technique must be ca-
pable of showing how any text in the infinite class can be generated.

Section 2.1 discusses how a concrete syntax can be used to define the strings
of symbols which are plausible programs in a language. A concrete syntax can
also tell us something about the structure the strings are trying to represent. A
carefully designed concrete syntax can also be used in parsing.

Most authors define semantics in terms of concrete representations of pro-
grams but experience with defining larger languages (e.g. PL/I or Ada) –or
languages with many ways of expressing same thing (e.g. C or Java)– makes
clear that this becomes messy and brings gratuitous difficulties into the part of
the description (the semantics) where one wants to focus on deeper questions.
Therefore, abstract syntax descriptions are used because these focus on struc-
ture and remove the need to worry about those symbols that are only inserted
in order to make parsing possible.

This is not quite the end of the story since both concrete and abstract syntax
descriptions allow too many possibilities and Section 2.2 explains how to cut
down the set of “valid” programs before attempting to give their semantics.

2.1 Syntax

There are many variants of notation for describing the Concrete Syntax of a
language. It is not difficult to devise ways of specifying valid strings and most of
the techniques are equivalent to Chomsky “context free” syntax notation. Most
publications follow the Algol 60 report [BBG+63] and use the notation which
is known as “Backus Normal Form” (also known as “Backus Naur Form”).7

Such a grammar can be used to generate or recognize sentences in the language.
Parsing also uses the grammar to associate a tree structure with the recognized
sentences.

A concrete syntax gives both a way of producing the texts of programs and of
parsing programs. But even for this rather simple language the concrete syntax
is “fussy” in that it is concerned with those details which make it possible to
parse strings (e.g. the commas, semicolons, keywords and –most notably– those
things that serve to bracket strings that occur in recursive definitions). For a
programming language like C or Java where there are many options, the concrete
syntax becomes tedious to write; the task has to be done but, since the syntactic
variants have nothing to do with semantics, basing the semantics on a concrete
syntax complicates it in an unnecessary way. The first big dose of abstraction is
deployed and all of the subsequent work is based on an “abstract syntax”.

An abstract syntax defines a class of objects. In most cases, such objects are
tree-like in that they are (nested) VDM composite objects. But to achieve the
abstraction objective, sets, sequences and maps are used whenever appropriate.
7 In passing, it is hard to believe that so many programming language books today

are published without a full concrete syntax for the language!.
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This section builds up the Abstract Syntax of “Base” (see Appendix A where
the description of the “Base” Language is presented in full).

A simple language (“Base”) can be built where a program is rather like a
single Algol block (with no nested blocks). A Program contains declarations of
Ids as (scalar8) variables and a sequence of Stmts which are to be executed.9

The declarations of the variables (vars) maps the identifiers to their types.
Program :: vars : Id m−→ ScalarType

body : Stmt∗

Notice that has –at a stroke– removed worries about the (irrelevant) order of
declarations; this also ignores the delimiters between identifiers and statements
since they are not an issue in the semantic description. The parsability of a
language has to be sorted out; but it is not a semantic question. Here and
elsewhere it is preferable to deal with issues separately and get things out of
the way rather than complicate the semantic description. The abstraction in an
abstract syntax does precisely this.

According to this abstract syntax, the smallest possible Program declares no
variables and contains no statements, thus

mk -Program({ }, [ ]) ∈ Program

Not much more useful is a program which declares one variable but still has no
statements.

mk -Program({i �→ IntTp}, [ ]) ∈ Program

More interesting programs are given below.
There are exactly two types in this base language:

ScalarType = IntTp | BoolTp

Three forms of statement will serve to introduce most concepts

Stmt = Assign | If |While

Assign :: lhs : Id
rhs : Expr

Thus, if e ∈ Expr ; i ∈ Id

mk -Assign(i , e) ∈ Assign

One of the major advantages of the VDM record notation is that the mk -Record
constructors make the sets disjoint.

Conditional execution can be defined in an If statement.
If :: test : Expr

th : Stmt∗

el : Stmt∗

8 The adjective “scalar” appears superfluous for now but compound variables like
arrays are discussed below.

9 Section 4 introduces Blocks and a program can then be said to contain a single Block
– but this is not yet needed.
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Thus,

mk -If (e, [ ], [ ]) ∈ If

A common form of repetitive execution is achieved by a While statement.

While :: test : Expr
body : Stmt∗

Thus,

mk -While(e, [ ]) ∈While

It is possible to illustrate the key semantic points with rather simple
expressions.

Expr = ArithExpr | RelExpr | Id | ScalarValue

ArithExpr :: opd1 : Expr
operator : Plus |Minus

opd2 : Expr

RelExpr :: opd1 : Expr
operator : Equals | NotEquals

opd2 : Expr

ScalarValue = Z | B

No definition is provided for Id since one can abstract from such (concrete)
details.

Thus,

1 ∈ ScalarValue
i ∈ Id
mk -ArithExpr(i ,Minus, 1) ∈ Expr
mk -RelExpr(i ,NotEquals, 1) ∈ Expr

And then with

s1 = mk -If (mk -RelExpr(i ,NotEquals, 1),
[mk -Assign(i ,mk -ArithExpr(i ,Minus, 1))],
[mk -Assign(i ,mk -ArithExpr(i ,Plus, 1))])

s1 ∈ Stmt

And, finally

mk -Program({i �→ IntTp}, [s1]) ∈ Program

It it worth noting that the supposed distinction between arithmetic and rela-
tional expressions is not policeable at this point; this gets sorted out in the next
section when type information is used.
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2.2 Eliminating Invalid Programs

Before moving to look at semantics, it is worth eliminating as many invalid
programs as possible. For example, it is easy to recognize that

mk -ArithExpr(i ,Minus, true)

contains an error of types. This is easy to check because it requires no “context”
but in a program which (like the final one in the preceding section) declares only
the identifier i , one would say that

mk -Assign(j ,mk -ArithExpr(i ,Minus, 1))

has no meaning because it uses an undeclared variable name. Similarly, uses of
variables should match their declarations and, if i is declared to be an integer,

mk -Assign(i , true)

makes no sense.
A function is required which “sorts the sheep from the goats”: a program

which is type correct is said to be “well formed”. A function which delivers
either true or false is a predicate. It is not difficult to define a predicate which
delivers true if type information is respected and false otherwise.

In order to bring the type information down from the declarations, the signa-
ture of the inner predicates must be

wf -Stmt :Stmt × TypeMap → B

wf -Stmt(s , tpm) ! · · ·

(all of these predicates are given names starting wf - · · · as a reminder that they
are concerned with well-formedness) with the following “auxiliary objects”

TypeMap = Id m−→ ScalarType

The top-level predicate is defined

wf -Program :Program → B

wf -Program(mk -Program(vars, body)) ! wf -StmtList(body, vars)

All that remains to be done is to define the subsidiary predicates. Those for Stmt
(and for Expr) have to be recursive because the objects themselves are recursive.
Thus

wf -StmtList : (Stmt∗)× TypeMap → B

wf -StmtList(sl , tpm) ! ∀i ∈ inds sl · wf -Stmt(sl(i), tpm)

Then:

wf -Stmt :Stmt × TypeMap → B

wf -Stmt(s , tpm) ! · · ·
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is most easily given by cases below10

wf -Stmt(mk -Assign(lhs , rhs), tpm) !
lhs ∈ dom tpm ∧
c-tp(rhs , tpm) = tpm(lhs)

wf -Stmt(mk -If (test , th, el), tpm) !
c-tp(test , tpm) = BoolTp ∧
wf -StmtList(th, tpm) ∧ wf -StmtList(el , tpm)

wf -Stmt(mk -While(test , body), tpm) !
c-tp(test , tpm) = BoolTp ∧
wf -StmtList(body, tpm)

The auxiliary function to compute the type of an expression (c-tp used above)
is defined as follows

c-tp :Expr × TypeMap → (IntTp | BoolTp | Error)

c-tp(e, tpm) ! given by cases below

c-tp(mk -ArithExpr(e1, opt , e2), tpm) !
if c-tp(e1, tpm) = IntTp ∧ c-tp(e2, tpm) = IntTp

then IntTp

else Error

c-tp(mk -RelExpr(e1, opt , e2), tpm) !
if c-tp(e1, tpm) = IntTp ∧ c-tp(e2, tpm) = IntTp

then BoolTp

else Error

For the base cases:

e ∈ Id ⇒ c-tp(e, tpm) = tpm(e)

e ∈ Z ⇒ c-tp(e, tpm) = IntTp

e ∈ B ⇒ c-tp(e, tpm) = BoolTp

Because they are dealing with the type information in the context of single
statements and expressions, such a collection of predicates and functions are
referred to as the “context conditions” of a language. They correspond to the
type checking done in a compiler. Just as there, it is not always so clear how far
to go with static checking (e.g. would one say that a program which included an
infinite loop had no meaning?)

The issue of whether or not a language is “strongly typed” is important and
this issue recurs repeatedly.
10 This is using the VDM pattern matching trick of writing a “constructor” in a para-

meter list.
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3 Semantics and Abstract Interpreters

This section explains the essential idea of presenting semantics via an abstract
interpreter. This is first done in terms of functions. The need –and notation– for
generalizing this to relations follows.

3.1 Presenting Operational Semantics by Rules

The essence of any imperative language is that it changes some form of “state”:
programs have an effect. For a procedural programming language the state notion
normally contains an association (sometimes indirect) between variable names
and their values (a “store”). In the simple language considered in this section,
the main “semantic object” is

Σ = Id m−→ ScVal

Thus σ ∈ Σ is a single “state”; Σ is the set of all “States”.
The fundamental idea is that executing a statement will transform the state

— this can be most obviously modelled as a function:
exec :Stmt × Σ→ Σ

exec(s , σ) ! . . .

Such a function can be presented one case at a time by using the VDM con-
structors as pattern matching parameters.

Expression evaluation has the type
eval :Expr × Σ→ ScVal

eval (e, σ) ! . . .

and can again be defined one case at a time.
Remember that only Programs that satisfy the context conditions are to be

given semantics. This restriction implies that types of arguments match the
operators “during execution”; similarly, the type of the expression of the value
evaluated in rhs must match the lhs variable and the type of any value in a
conditional or while statement must be Boolean.

The recursive function style is intuitive but there is a serious limitation: it
does not handle non-determinism! Non-determinism can arise in many ways in
programming languages:

– order of expression evaluation is a nasty example
– specific non-deterministic constructs
– parallelism

It is really the third of these which is most interesting and is the reason for facing
non-determinism from the beginning.

The issues can be illustrated with a tiny example language. Later sections
(notably, Sections 5.4, and 6) make clear that key concepts are establishing
threads (of computation), the atomicity with which threads can merge and ex-
plicit synchronization between threads. In the simple language that follows, a
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Program consists of exactly two threads, assignment statements are (unrealisti-
cally) assumed to be atomic and no explicit thread synchronization mechanisms
are offered. This gives rise to the following abstract syntax.

Program :: left : Assign∗

right : Assign∗

In order to give a semantics for any such language, one needs to accept that it
is necessary to think in terms of relations: one starting state can legitimately give
rise to (under the same program) different final states. Moreover, the semantic
relation has to be between “configurations” which record, as well as the store,
the program which remains to be executed. Thus:

p−→:P((Program × Σ)× (Program × Σ))

The two semantic rules which follow show exactly how nondeterminism arises
because a program which has non-empty statement lists in both branches will
match the hypotheses of both rules.

(s , σ) s−→ σ′

mk -Program([s ] � restl , r), σ)
p−→ mk -Program(restl , r), σ′)

(s , σ) s−→ σ′

(mk -Program(l , [s ] � restr), σ)
p−→ (mk -Program(l , restr), σ′)

Finally, a program is complete when both of its branches have terminated.

mk -Program([ ], [ ]), σ) −→ σ

The interleaving of the two threads is achieved by the semantics being “small
step”: the whole configuration is subject to matching of the rules after each step.

Alternatively, one might want to add to the language an explicit construct
with which a programmer can determine the level of atomicity:

Program :: left : (Assign | Atomic)∗

right : (Assign | Atomic)∗

Atomic :: Assign∗

The relevant semantic rule becomes:

(sl , σ) sl−→ σ′

(mk -Program([mk -Atomic(sl)] � restl , r), σ)
p−→ (mk -Program(restl , r), σ′)

The semantic transition relation for expressions could be given as:
e−→:P((Expr × Σ)× ScVal)

Strictly, there are no constructs in this language that make expression evaluation
non-deterministic so it would be possible to stick with functions.

It would also be possible to illustrate how it is necessary to extend the idea
of a functional semantics (to one using relations) by looking at a specific non-
deterministic construct such as Dijkstra’s “guarded command” [Dij76]. Just as
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with the concurrent assignment threads, an explicit relation ((Stmt × Σ) × Σ)
has to be used.

This way of presenting operational semantics rules follows Plotkin’s [Plo81]11

and is often referred to as “Plotkin rules”. Using this style for an entirely deter-
ministic language gives the first full semantics in this paper: the attentive reader
ought be able to understand the definition in Appendix A.

3.2 Ways of Understanding the Rules

There are several different views of the operational semantics rules used in the
previous section. For a given starting store and program text, the rules can
be used to construct a diagram whose root is that initial program and store.
Each rule that matches a particular configuration can then be used to define
successor configurations. Because more than one rule might match, the inher-
ent non-determinism is seen where there is more than one outgoing arc from a
particular configuration.

For our purposes, it is more interesting to view the rules as providing an
inductive definition of the s−→ relation. This leads on naturally to the use of
such rules in proofs. At the specific level one might write:

from σ0 = {x �→ 9, y �→ 1}; σ1 = {x �→ 3, y �→ 1}
1 (3, σ0)

e−→ 3
e−→

2 (mk -Assn(x , 3), σ0)
s−→ σ1 1,

s−→
3 (x , σ1)

e−→ 3
e−→

4 (mk -Assn(y , x), σ1)
s−→ {x �→ 3, y �→ 3} 3,

s−→
infer ([mk -Assn(x , 3),mk -Assn(y , x)], σ0)

sl−→ {x �→ 3, y �→ 3} 2, 4,
sl−→

but it is more interesting to produce general proofs of the form:

from pre-prog(σ0); (prog , σ0)
p−→ σf

n
...

infer post-prog(σ0, σf )

where the intermediate steps are justified either by a semantic rule or by rules
of the underlying logic. This is essentially what is done in [CM92, KNvO+02]
and very clearly in [CJ07].

3.3 Developments from This Base

There are many ways to extend the language description in Appendix A that
do not require any further modelling concepts — they would just constitute
applications of the ideas above to cover other programming language concepts.
There are a few topics, however, which deserve mention before moving on to
Section 4.

Looking back at the semantic rule for (mk -Program(vars, body))
p−→ Done

in Appendix A it could be observed that there is no point in running a program!

11 Republished as [Plo04b] — see also [Plo04a, Jon03b].
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Execution leaves no visible trace in the world outside the program because the
block structure “pops all of the variables off the stack” at the end of execution.
Adding input/output is however a simple exercise. For the abstract syntax:

Stmt = . . . |Write

Write :: value : Expr

The relevant context condition is:

wf -Stmt(mk -Write(value), tps) ! tp(value, tps) = IntTp

The essence of modelling an imperative language is to put in the “state” those
things that can be changed. So for output the state needs to be a composite
object that embeds the “store” in “state” but adds an abstraction of an output
file.

Σ :: vars : Id m−→ ScVal
out : Z

∗

The semantic rule for the new statement is:

(value, σ) e−→ v
(mk -Write(value), σ) s−→ mk -Σ(σ.vars, σ.out � [v ])

Unfortunately, some other rules have to be revised because of the change in
Σ — but only a few (routine) changes.

(rhs , σ) e−→ v
(mk -Assign(lhs , rhs), σ) s−→ mk -Σ(σ.vars † {lhs �→ v}, σ.out)

e ∈ Id
(e, σ) e−→ σ.vars(e)

Covering input statements should be obvious and an extension to linking
programs to more complex file stores –or even databases– not difficult. (The
whole question of why programming languages do not directly embed database
concepts is interesting. It is certainly not difficult to view relations as datatypes
and concepts of typing could be clarified thereby. The most interesting aspects
concern the different views of concurrency and locking: this is briefly touched on
in Section 5.4.)

Another topic that offers interesting language design trade-offs is statements
for repetition. Whilst it is true that while statements suffice in that they make a
language “Turing complete”, many other forms of repetitive statement are found
in programming languages.

The intuition here is that programmers want to deal with regular collections
of data in analogous ways. Thus, it would be useful to study for statements in
connection with arrays. (But the more interesting possibilities for the semantics
of arrays come after parameter passing by location (aka by reference) has been
covered in Section 4.) A simple statement might be:
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Stmt = · · · | For

For :: control : Id
limit : Expr
body : Stmt∗

(limit , σ) e−→ limitv
((control , limitv , body), σ † {control �→ 1}) i−→ σ′

(mk -For(control , limit , body), σ) s−→ σ′

Where, the auxiliary concept of iteration is defined as follows:

i−→:P(((Id × Z× (Stmt∗))× Σ)× Σ)

σ(control) > limitv
((control , limitv , body), σ) i−→ σ

σ(control) ≤ limitv
(body, σ) sl−→ σ′

((control , limitv , body), σ′ † {control �→ σ′(control) + 1}) i−→ σ′′

((control , limitv , body), σ) s−→ σ′′

Not only are there many alternative forms of for construct to be investigated
but they also point to both questions of scoping (e.g. should the control variable be
considered to be a localdeclaration) and interesting semantic issues of equivalences
a programmer might expect to hold between different forms. It is also tempting to
look at parallel forms because –from their earliest manifestation in FORTRAN–
for statements have frequently over-specified irrelevant sequential constraints.

4 Scopes and Parameter Passing

This section considers the problem of variables having scope and some different
ways in which parameters can be passed to functions. The language (“Blocks”)
used is still in the ALGOL/Pascal family because it is here that these problems
were first thought out. A firm understanding of these concepts makes for greater
appreciation of what is going on in an object-oriented language (see Section 6).
A bonus of this study is that one of the key modelling techniques is explained
(in the setting where is first arose).

4.1 Nested Blocks

Sections 4.2–4.5 cover the modelling of functions and procedures which facilitate
the use of the same piece of code from different places in a program containing
them. Before addressing this directly, nested blocks can be added to the language
of Section 3. Here the pragmatics of the feature are the ability to use the same
identifier with different meaning within the same program (a nested block might
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program
begin
bool a; int i ; int j ;
if i = j then

begin
int a;
a : = 1
end

fi
a : = false
end

end

Fig. 1. Scope for Block

for example be designed by a different programmer than the one who wrote
the containing text; it would be tedious and error prone to have to change all
identifiers to be unique throughout a program).

In the examples throughout Section 4, a concrete syntax is used that surrounds
the declarations and statements with begin · · · end. Consider the example
(concrete) program in Figure 1. The inner block defines its own scope and the
a declared (to be of type integer) there is distinct from the variable of the
same name (declared to be of type bool) in the outer block. Although the two
assignments to the name a imply that the type is different, both are correct
because two different variables are in play. One could insist that programmers
avoid the reuse of names in this way but this would not be a kind restriction.

It is easy to add an option to Stmt that allows such nesting

Stmt = · · · | Block

One might then expect to say that a Program is a Block but allowing it to be
a single Stmt leaves that possibility open and adds a slight generalization. Thus
the abstract syntax might change (from Section 3) in the following ways:

Program = Stmt

Stmt = Assign | If |While | Block

Block :: vars : Id m−→ ScalarType
body : Stmt∗

The context conditions only change as follows:

wf -Program :Program → B

wf -Program(s) ! wf -Stmt(s , { })

wf -Block :Block × TypeMap → B

wf -Block(mk -Block(vars, body), tpm) ! wf -StmtList(body, tpm † vars)
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Notice that it is obvious from this that all statements in a list are checked
(for type correctness) against the same TypeMap: even if the ith statement is a
block, the i +1st statement has the same potential set of variables as the i −1st
statement.

The semantics for a Block have to show that local variables are distinct from
those of the surrounding text. On entry to mk -Block(vars, body) this just requires
that each identifier in the domain of vars gets initialized. Leaving the block is
actually more interesting. After the execution of body has transformed σi into
σ′
i , the state after execution of the whole block contains the values of the (not

re-declared) local variables from σ′
i but it is also necessary to recover the values

from σ of variables which were masked by the local names.

{id �→ σ′
i (id) | id ∈ dom σ ∧ id /∈ dom vars} ∪

{id �→ σ(id) | id ∈ dom σ ∧ id ∈ dom vars)}

Thus (using the VDM map restriction operator):

σi = σ † ({id �→ 0 | id ∈ dom vars ∧ vars(id) = IntTp}∪
{id �→ true | id ∈ dom vars ∧ vars(id) = BoolTp})

(body, σi )
sl−→ σ′

i

(mk -Block(vars, body), σ) s−→
((dom σ − dom vars) � σ′

i) ∪ (dom vars � σ)

Notice that dom σ is unchanged by any Stmt (even a Block).

4.2 Avoiding Non-deterministic Side Effects

The pragmatics for adding functions (or procedures) to a language are for re-
use of code: one can pull out a piece of algorithm to be used frequently —
not so much for space since a compiler might anyway “in-line” it — but as
a way of making sure that it is modified everywhere at once if it has to be
changed.

Functions again bring a form of local naming. Unless a language designer
is careful, they can also bring a very messy side effect problem. If a function
can reference non-local variables, a call to the function can give rise to side
effects. In cases where there is more than one function call in an expression,
the order in which the function calls occur can influence the final result of the
program.12

An obvious way to avoid the non-determinism caused by functions referring
to non-local variables is to set up the context conditions to ban global access: the
only identifiers to which a function can refer are either names of the parameters
or those of newly defined local variables.

The form of Function here has an explicit result clause13 at the end of its
text:

12 Pascal’s rule that such a program would be in error is the worst of all worlds for the
language specifier: one has to show the non-determinism in order to ban it!

13 This avoids a goto-like jump out of phrase structure.
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program
begin
bool a;
function f (int a) int

a : = 1; . . .
result(7)

end
. . .
a : = true
end

end

Fig. 2. Scope for Fun

function f (int a) int
a : = 1;
result(a + 7)

end

A small program to illustrate scope definition in functions might be as in
Figure 2. As in Figure 1, there are two distinct uses of the name a and the
arguments against asking the programmer to take the strain are stronger since
functions might well be taken from another source.

One might build such a definition around an abstract syntax:
Block :: vars : Id m−→ ScalarType

fns : Id m−→ FnDefn
body : Stmt∗

FnDefn :: type : ScalarType
parml : ParmInfo∗

body : Stmt∗

result : Expr

ParmInfo :: name : Id
type : ScalarType

Expr = · · · | FnCall

FnCall :: fn : Id
argl : Expr∗

There are interesting semantic issues even with such a restrictive form of
function call. First, there is the language decision about how to return a value
from a function: different languages introduce a statement return(e); or assign
to the name of the function as in f ← e; or just allow that an expression is
written in place of a statement. Notice that all of these approaches only support
the return of a single value. One can mitigate the impact of this restriction
with the introduction of “records” (see Section 5.1). Another way around the
restriction is by using an appropriate parameter passing mechanism (e.g. pass
by location) — see Section 4.3.
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There is a whole collection of questions around modes of parameter passing,
but these are deferred to Sections 4.3–4.5.

Turning next to the description of such a language, the result of banning side
effects is that the semantic transition relation for expressions remains:

e−→:P((Expr × Σ)× ScVal)

(rather than also having a Σ on the right of the main relation).
When writing a semantics for any feature that can use a named piece of text

from many places, there is the question of how that text is located when it is
“called”. Here, it is stored in some form of environment (Env in Section 4.3);
a slightly different approach is illustrated for the object-oriented language in
Section 6.

It has however been made clear by the title of this section that a major
language design issue around functions is finding ways to avoid unpredictable
side effects. An alternative way of avoiding the non-determinism from side-effects
is to have “procedure calls” (rather than functions which can be referenced in
an expressions).

4.3 Parameter Passing

In Section 3.1, variables were declared for the whole Program; Section 4.1 in-
troduced nested blocks and Section 4.2 looked at functions with no external
references. It is now time to move on to begin a look at various forms of para-
meter passing — call-by-location (call by reference) is covered first followed by
a look at other modes in Section 4.5.

There are real engineering trade-offs here. Passing parameters by location
offers a way to change values in the calling environment.14 This is particularly
useful for programs which manipulate and reshape tree structures. But passing
parameters by location introduces aliasing problems which complicate formal
reasoning and debugging alike.

So the Abstract Syntax for Function definitions might be
Fun :: returns : ScalarType

params : Id∗

paramtps : Id m−→ ScalarType
body : Stmt∗

result : Expr

and the relevant context condition15

14 In passing, it is worth noting that this facilitates returning more than one value from
a single function call.

15 The function uniquel can be defined:

uniquel : (X ∗) → B

uniquel(l) ! ∀i , j ∈ inds l · i �= j ⇒ l(i) �= l(j )
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wf -Fun :Fun × Types → B

wf -Fun(mk -Fun(returns , params , paramtps , body, result), tps) !
uniquel(params) ∧
elems params = dom paramtps ∧
tp(result) = returns ∧
wf -StmtList(body, tps † paramtps)

To define the way that a Block builds the extended Types

Types = Id m−→ Type

Type = ScalarType | FunType

one needs

FunType :: returns : ScalarType
paramtpl : ScalarType∗

The Abstract Syntax for Block is

Block :: vars : Id m−→ ScalarType
funs : Id m−→ Fun
body : Stmt∗

and the resulting Context Condition is16

wf -Stmt :Block × Types → B

wf -Stmt(mk -Block(vars, funs , body), tps) !
dom vars ∩ dom funs = { } ∧
let var -tps = tps † vars in
let fun-tps =
{f �→ mk -FunType(funs(f ).returns ,

apply(funs(f ).params , funs(f ).paramtps)) |
f ∈ dom funs} in

∀f ∈ dom funs · wf -Fun(funs(f ), var -tps)
wf -StmtList(body, var -tps † fun-tps)

The next task is to look closely at parameter passing. As indicated at the
beginning of this section, this is done in an ALGOL (or Pascal) framework.

A small program which illustrates the way functions are handled in the
“Blocks” language is given in Figure 3. Functions are declared to have a type;

16 The auxiliary function apply is defined:

apply : (X ∗) × (X m−→ Y ) → (Y ∗)

apply(l ,m) !
if l = [ ]
then [ ]
else [m(hd l)] � apply(tl l ,m)
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program
begin
int i , j , k ;
function f (int x , int y) int

i : = i + 1; x : = x + 1; y : = y + 1 /* print(x, y) */
result(7)

end
. . .
i : = 1; j : = 4;
k : = f (i , j ) /* print(i, j) */
end

end

Fig. 3. Parameter example (i)

their definition text contains a body which is a sequence of statements to be
executed; the text ends with an explicit result expression.

Here, the non-determinism discussed in Section 4.2 can be avoided by limiting
functions to be called only in a specific way.

v : = f (i)

So the Abstract Syntax for a Call statement is:
Call :: lhs : Id

fun : Id
args : Id∗

The Context Condition is

wf -Stmt(mk -Call(lhs , fun, args), tps) !
lhs ∈ dom tps ∧
fun ∈ dom tps ∧
tps(fun) ∈ FunType ∧
tps(lhs) = (tps(fun)).returns ∧
len args = len (tps(fun)).paramtpl ∧
∀i ∈ inds args · tp(args(i), tps) = ((tps(fun)).paramtpl)(i)

In Figure 3, within f , both x , i refer to the same “location”. Changing the
call to be as in Figure 4 results in the situation, within f , that all of x , y, i refer
to the same “location”. Notice that j : = f (i + j , 3) cannot be allowed for “by
location”.

The basic modelling idea is to split Σ of Section 3.1 into two mappings: Env
and Σ:

Env = Id m−→ Den

Den = ScalarLoc | FunDen

Σ = ScalarLoc m−→ ScalarValue
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program
begin
int i , j , k ;
function f (int x , int y) int

i : = i + 1; x : = x + 1; y : = y + 1 /* print(x, y) */
result(7)

end
. . .
i : = 1; j : = 4;
k : = f (i , i) /* print(i, j) */
end

end

Fig. 4. Parameter example (ii)

So now the basic semantic relations become:
s−→:P((Stmt × Env × Σ)× Σ)

e−→:P((Expr × Env × Σ)× ScalarValue)

One can now talk about the left-hand (of an assignment) value of an identifier
and separating this out will pay off in Section 4.4 when dealing with references
to elements of arrays.Left-hand values occur elsewhere so it is worth having a
way of deriving them.

lhv−→:P((VarRef × Env × Σ)× ScalarLoc)

e ∈ Id

(e, env , σ) lhv−→ env(e)

in terms of which, accessing the “right hand value” can be defined:

e ∈ Id
(e, env , σ) lhv−→ l
(e, env , σ) e−→ σ(l)

The left hand value is used to change a value in –for example– assignments:

(lhs , env , σ) lhv−→ l
(rhs , env , σ) e−→ v
(mk -Assign(lhs , rhs), env , σ) s−→ σ † {l �→ v}

Most rules just pass on env :

sl−→:P(((Stmt∗)× Env × Σ)× Σ)

(s , env , σ) s−→ σ′

(rest , env , σ′) sl−→ σ′′

([s ] � rest , env , σ) sl−→ σ′′
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program
begin
int a;
function f () int

a : = 2 result(7) end
. . .
a : = 1

begin
int a;
a : = 5;
a : = f ()
end

/* what is the value of a */
end

end

Fig. 5. Function static scoping

Similarly

e−→:P((Expr × Env × Σ)× ScalarValue)

(e1, env , σ) e−→ v1
(e2, env , σ) e−→ v2
(mk -ArithExpr(e1,Plus, e2), env , σ) e−→ v1 + v2

We now look at how to create and modify env . Postponing the question of
functions for a moment, the overall shape of the meaning of a Block is:

(varenv , σ′) = /* find and initialize free locations */
funenv = /* create function denotations */
env ′ = env † varenv † funenv
(body, env ′, σ′) sl−→ σ′′

(mk -Block(vars, funs , body), env , σ) s−→ (dom σ) � σ′′

The cleaning up of the locations from σ′′ might look “fussy” but it pays off in
compiler proofs where the designer will probably want to re-use locations in a
stack discipline. The first hypothesis of this rule can be completed to

(varenv , σ′) = newlocs(vars, σ)

where the auxiliary function newlocs creates an initial state for the initial values
of a sufficient number of locations for each identifier declared in vars: each is
initialized appropriately (a formal definition is in Appendix B).

Function denotations contain the information about a function which is needed
for its execution. There is one final issue here: consider the program in Figure 5.
The non-local reference to a within the function f must refer to the lexically
embracing variable and not to the one at the point of call. (This is handled by
the FunDen containing the Env from the point of declaration.)
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FunDen :: parms : Id∗

body : Stmt∗

result : Expr
context : Env

These are easy to build by selecting some components of the declaration of a
Fun. (The reason for storing the declaring Env is explained below.)

b-Fun-Den :Fun × Env → FunDen

b-Fun-Den(mk -Fun(returns , params , paramtps , body, result), env) !
mk -FunDen(params , body, result , env)

Putting this all together gives:

(varenv , σ′) = newlocs(vars, σ)
funenv =
{f �→ b-FunDen(funs(f ), env † varenv) | f ∈ dom funs}

env ′ = env † varenv † funenv
(body, env ′, σ′) sl−→ σ′′

(mk -Block(vars, funs , body), env , σ) s−→ (dom σ) � σ′′

The key point in the semantic rule for Call statements is the creation of
arglocs which holds the locations of the arguments:

(lhs , env , σ) lhv−→ l
mk -FunDen(parms , body, result , context) = env(f )
len arglocs = len args
∀i ∈ inds arglocs · (args(i), env , σ) lhv−→ arglocs(i)
parm-env = {parms(i) �→ arglocs(i) | i ∈ inds parms}
(body, (context † parm-env), σ) sl−→ σ′

(result , (context † parm-env), σ′) e−→ res
(mk -Call(lhs , f , args), env , σ) s−→ (σ′ † {l �→ res})
At this point a complete definition of the language so far can be presented —

see Appendix B.
If one were to allow side effects in functions, the type of the semantic relation

for Expressions would have to reflect this decision.
Both Env and “surrogates” like ScalarLoc are general modelling tools.

4.4 Modelling Arrays

It is interesting to pause for a moment to consider two possible models for adding
arrays to the language in Appendix B. Looking firstly at one dimensional arrays
(vectors), one might be tempted to use:

Env = Id m−→ Loc

Σ = Loc m−→ (ScalarValue | ArrayValue)



Understanding Programming Language Concepts Via Operational Semantics 201

ArrayVal = N
m−→ ScalarValue

This would make passing of array elements by-location very messy. A far better
model is:

Env = Id m−→ Den

Den = ScalarLoc | ArrayLoc | FunDen

ArrayLoc = N
m−→ ScalarLoc

Σ = ScalarLoc m−→ ScalarValue

Thinking about alternatives for multi-dimensional arrays, symmetry points
us at:

ArrayLoc = (N∗) m−→ ScalarLoc

Rather than

ArrayLoc = N
m−→ (ScalarLoc | ArrayLoc)

It is possible to add a data type invariant:

ArrayLoc = (N∗) m−→ ScalarLoc
inv (m)!∃ubl ∈ (N∗) · dom m = sscs(ubl)

The semantics of Appendix B requires minimal changes.17 They are sketched
here, starting with the abstract syntax:

Assign :: lhs : VarRef
rhs : Expr

VarRef = ScalarRef | ArrayElRef

ScalarRef :: name : Id

ArrayElRef :: array : Id
sscs : Expr∗

Call :: lhs : VarRef
fun : Id
args : VarRef ∗

Expr = ArithExpr | RelExpr | VarRef | ScalarValue

The semantics requires a revision to the computation of left hand values.18

lhv−→:P((VarRef × Env × Σ)× ScalarLoc)

(mk -ScalarRef (id), env , σ) lhv−→ env(id)

17 In fact, the most extensive change is coding up a way to select distinct ScalarLocs
for each array element.

18 The issue of dynamic errors is here impossible to avoid — see Section 5.5.
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len sscvl = len sscs
∀i ∈ sscs · (sscs(i), env , σ) e−→ sscvl(i)
sscvl ∈ dom (env(id))

(mk -ArrayElRef (id , sscs), env , σ) lhv−→ (env(id))(sscvl)

e ∈ VarRef
(e, env , σ) lhv−→ l
(e, env , σ) e−→ σ(l)

One interesting issue that can be considered at this point is array “slicing”
(i.e. the ability to define locations for (arbitrary) sub-parts of arrays).

4.5 Other Parameter Passing Mechanisms

Many other parameter passing mechanisms have been devised. Since what hap-
pens in object-oriented languages is fairly simple, a full account is not presented
here; but a few brief notes might encourage the reader to experiment.

The simplest and most obvious mechanism is probably parameter passing by
value. This is modelled as though one were creating a block with initialization
via the argument of the newly created locations. Here, of course, arguments in
calls can be general expressions.

As pointed out at the beginning of Section 4.3, there are clear dangers in
parameter passing by-location. These are tolerated because the other side of the
engineering balance is that certain programs are significantly more efficient if ad-
dresses are passed without creating new locations and copying values. The other
advantage of being able to affect the values in the calling code can, however, be
achieved without introducing all of the disadvantages of aliasing. The parameter
passing mechanism known as by-value/return copies the values at call time but
also copies the values back at the end of the called code. Not surprisingly, the
formal model is a hybrid of call-by-name and call-by-value.

These three methods by no means exhaust the possibilities: for example,
Algol 60 [BBG+63] offered a general “call-by-name” mechanism which essentially
treated the argument like a function (which therefore required evaluation in an
appropriateenvironment).Itisimportanttonotethatthisisnotthesameasparameter
passing “by text” where the raw text is passed and evaluated in the called context.

It is not difficult to see how functions can be passed as arguments. It should be
noted that returning functions as results is more delicate because the context in
which theywere declaredmightno longer exist after the return.For similar reasons,
this author has never accepted arguments about “making functions first class
objects”(cf. [vWSM+76])andaddingfunctionvariablestoa language(theyalsoadd
confusionsinreasoningaboutprogramswhichareakintothosewithgotostatements).

5 Modelling More Language Features

There are many aspects of programming languages that could be explored at
this point: here, only to those that relate to our objective of understanding
object-oriented languages in Section 6 are considered.
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5.1 Records

Algol-W [WH66] provided support for a “record” construct (in other languages
sometimes called “structures”). Records are like arrays in that they collect to-
gether several values but in the case of records the “fields” need not be of the
same type. Reference to individual fields is by name (rather than numerical in-
dex) and it is straightforward to offer a “strong typing” approach so that correct
reference is a compile time question but this does require a notion of declaring
record types if the matching is done by name rather than by shape. (Some lan-
guages –including Pascal– somewhat complicated this issue by offering “variant
records”.)

Having studied arrays in Section 4.4, it is fairly clear how to model structures.
Their type checking is straightforward. The semantic model revolves around

RecordLoc = Id m−→ Loc

Unlike ArrayLoc, there is no virtue in providing the symmetrical access to any
nested field and one has:

Loc = ScalrLoc | RecordLoc

An interesting scoping extension is the Pascal with construct that can be
used to open up the naming of the fields of a record.

Extensions to cope with arrays of structures or record elements which are
arrays are straightforward.

5.2 Heap Storage

The block structured languages up to this point can be implemented with a
“stack discipline”: that is, the most recently allocated storage is always the next
to be released. Making this work for languages of the Algol family is non-trivial
but Dijkstra’s “display” idea showed that it was possible and there have been
subsequent developments (e.g. [HJ71]).

Storage which is allocated and freed by the programmer poses many dangers
but heap storage in one form or another is available in all but the most restric-
tive languages. The need is clear: programs such as those for B-Trees need to
allocate and free storage at times that do not match the phrase structure of a
program. In fact, forms of dynamic storage manipulation were simulated in ar-
rays from FORTRAN onwards and, of course, LISP was built around pointers.
The concept of records made it possible for the programmer to describe struc-
tures that contained fields which were pointers (to record types). Pascal offered
a new statement which was implemented by keeping a pool of free storage and
allocating on request.

Once one has a model of records as in the preceding section, it is not difficult
to build a model for heap storage: the set of ScValues has to include Pointers.
In fact, this is an area where the abstract model is perhaps too easy to construct
in the sense that the ease hides considerable implementation detail. One can
however discuss issues like “garbage collection” and “dangling pointers” in terms
of a carefully constructed model.
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5.3 Abstract Data Types

The whole subject of “abstract data types” deserves a history in its own right.
For the key contribution made by the “CLU” language, see [Lis96]. Here, it is
sufficient to observe that it was realized that programmers needed the ability
to change the implementation of a collection of functions and/or procedures by
redefining the underlying data structures without changing their syntactic or
semantic interface. It was thus essential to have language constructs which fixed
interfaces but hid internal details.

5.4 More on Concurrency

There are many concurrency extensions which can be made to the language
developed to this point.19 Interesting exercises include the addition of a “parallel
For statement”. As in Section 3.1, one quickly becomes aware of the dangers of
interference between concurrent threads of execution. It is argued in Section 6
that one of the advantages of object-oriented languages is that they offer a way
to marshal concurrency.

For now, the key questions to be noted are:

– How are threads created?
– How does one synchronize activity between threads?
– What is the level of granularity? (or atomicity)

Each of these questions can be studied and described using operational semantics
and the question of atomicity in particular is returned to in Section 7.

A study of the different views of locking taken by the programming language
and database communities (cf. [JLRW05]) can also be based on operational se-
mantic descriptions.

5.5 Handling Run-Time Errors

Context conditions are used to rule out programs which can be seen to be in-
correct statically: the classic example of such errors is mismatch between type
declarations of variables and their use. Many errors can, however, only be de-
tected when a program is executed — at least in general. Access to uninitialized
variables (especially those declared to contain pointers) is one class of such er-
rors: obvious cases might be spotted statically, but in general one can only know
about control flow issues with the actual values in a state.

A better example –and the one used in this section– might be indexing outside
the bounds of an array. As those who have suffered from “stack overflow” attacks
know to their cost, this can be an effective way to corrupt a program. It is not
difficult to mark the detection of such errors in operational semantic descriptions;
the bigger question is what action should be described when run-time errors are
detected. In Section 4.4, the rule

19 In fact, it is instructive to model even primitive concepts like “semaphores”.
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len sscvl = len sscs
∀i ∈ sscs · (sscs(i), env , σ) e−→ sscvl(i)
sscvl ∈ dom (env(id))

(mk -ArrayElRef (id , sscs), env , σ) lhv−→ (env(id))(sscvl)

clearly shows in its last hypothesis that access is only defined for valid subscript
lists. In effect, there is no rule for invalid subscripts so the computation “stalls”.
For emphasis, one could add a rule that states an error has occurred but there
is a meta-issue about what a language standard has to say about whether such
errors must be detected or whether an implementation is free to deliver any
result from the time of the error onwards. This latter course might appear to be
a denigration of responsibility but one must accept that checking for arbitrary
rune time errors can be expensive. This is one reason for seeking as strong a
type discipline as possible.

More promising are the languages which define what should be done on en-
countering errors. A language might, for example, require that an out-of-bounds
exception be raised. Essentially, the idea is to make semantic functions deliver
either a normal or abnormal result. This idea originated in [HJ70] and was fully
worked out in [ACJ72]; Nipkow [KNvO+02] uses a more economical way of defin-
ing the union of the possibilities.

6 Understanding Objects

All of the modelling tools to understand –and record our understanding of–
an interesting language are to hand. Furthermore, it is possible to look at how
object-oriented languages resolve some of the key engineering tensions relating
to the design of programming languages. The strands of our story coalesce here.

The language introduced in this section is referred to as “COOL”. It is not
intended to be a complete OOL (extensions are sketched in Section 6.6). The
reader is referred to [KNvO+02] for a description of Java.

Section 5.2 discusses the need to create storage dynamically (on a heap); the
necessity to dispose of unwanted items; and resulting issues of garbage collection.
Objects collect together data fields for their “instance variables” in a way that
gives the power or records. Objects can be dynamically created (and garbage
collected).

Locality of reference to the fields of an object by the methods of that class
offers a way to resolve the (abstract data type — cf. Section 5.3) issues in a
way which lets the implementation of an object be changed without changing
its interface.

In one sense, the pure object view that everything (even a constant) is an
object sweeps away the distinctions in parameter passing: everything is passed
by location — but some objects are immutable.

Most importantly for our concern about concurrency, object-oriented lan-
guages provide a natural way to marshal threads. The view is taken here that
each object should comprise a thread of control. Because instance variables can



206 C.B. Jones

only be referred to by the methods of that class20, there is a natural insulation
against interference. Sharing can be established by the passing of object refer-
ences but this is under clear programmer control. In COOL, the restrictive view
is taken that only one method can be active in an object and this eliminates
local race conditions. This combination of decisions means that the programmer
is also in control of the level of atomicity (of interference).

(Space does not permit a discussion of (the important) issues of why objects
work well in design and point the reader at excellent books such as [DW99] for
such material.)

6.1 Introducing COOL

It is easiest to get into the spirit of COOL by considering a programming exam-
ple. The class Sort in Figure 6 provides a (sequential) facility for maintaining a
sequence of integers in ascending order. (One could add a method that returns
–and deletes– the first item but the insert and test let us show the interesting
features.)

Sort class
vars v : N ← 0; l : unique ref(Sort) ← nil
insert(x : N) method

begin
if is-nil(l) then (v ← x ; l ← new Sort)
elif v ≤ x then l .insert(x )
else (l .insert(v); v ← x )
fi
;
return

end
test(x : N) method : B

if is-nil(l) ∨ x < v then return false
elif x = v then return true
else return l .test(x )
fi

Fig. 6. Example Program Sort – sequential

A class is a template for object structure and behaviour: it lists the instance
variables with their corresponding types and defines the parameters for each
method, its result type and its implementation. An instance variable can have one
of three types: integer, Boolean or (typed) reference (or “handle”). A reference
value is the “handle” of another object; the special value nil is used to indicate
when no reference is being held.21

20 Avoiding the use of Java’s public fields.
21 To justify some interesting equivalences (see below) any variable declared to be a

reference is identified as either shared or private (unique). The latter is written as
a keyword (unique ); the default is shared. A variable marked as unique can only
be assigned a handle of a newly created object and it is prohibited to duplicate its
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Objects of a class (objects corresponding to the class description) can be
generated by executing a new statement that creates a new object with which a
unique reference is associated, and returns this reference as a result. As implied
above, all objects of a class share the same structure and behaviour, however,
each possesses its own copy of the instance variables; it is on these copies that
the methods operate.

An object can attempt to invoke22 a method of any object to which it holds
a handle. The concrete syntax for method invocation is α.m(x̃ ), where α is the
identity of the object, m is the method name and x̃ is the list of parameters.
When an object accepts a method invocation the client is held in a rendezvous.
The rendezvous is completed when a value is returned; in the simplest case this
is by a return statement.23

In addition to the statements described above, COOL provides a normal reper-
toire of simple statements.

It follows from the above that an object can be in one of three states: quiescent
(idle), waiting (held in rendezvous) or active (executing a method body). Meth-
ods can only be invoked in an object which is in the quiescent state; therefore
–in COOL– at most one method can be active at any one time in a given object.

These comments should help to clarify most aspects of the sequential version
of Sort .24

The implementation of both these methods is sequential: at most one object
is active at any one time. Concurrency can be introduced into this example by
applying two equivalences. The insert method given in Figure 6 is sequential
because its client is held in a rendezvous until the effect of the insert has passed
down the list structure to the appropriate point and the return statements have
been executed in every object on the way back up the list. If the return statement
of insert is commuted to the beginning of the method as in Figure 7, it becomes
a release in which the client is able to continue its computation concurrently with
the activity of the insertion. Furthermore, as the insertion progresses down the
list, objects ‘up stream’ of the operation are free to accept further method calls.
One can thus imagine a whole series of insert operations trickling down the list
structure concurrently.

It is not possible to apply the return commutation equivalence to the test
method because the client must be held until a result can be returned. It is,

contents: unique variables cannot appear on the right hand side of an assignment
statement, be passed as arguments to a method or be returned as a result. These
restrictions ensure that the object reference being held is unknown to any other
object.

22 The terms “method invocation” and “method call” are used interchangeably.
23 The delegate statement allows an object to transfer the responsibility for answering

a method call to another object, without itself waiting for the result – see below.
24 The return statement in Figure 6 has a method call in the place of an expression,

which strictly does not conform to the syntax of COOL. One simple remedy would
be to assign the result of this call to a temporary variable and return the value of
that variable. Since this is straightforward, and adds nothing to the language, it is
preferred here to rely on the reader’s comprehension.
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Sort class
vars v : N ← 0; l : unique ref(Sort) ← nil
insert(x : N) method

begin
release;
if is-nil(l) then (v ← x ; l ← new Sort)
elif v ≤ x then l .insert(x )
else (l .insert(v); v ← x )
fi

end
test(x : N) method : B

if is-nil(l) ∨ x < v then return false
elif x = v then return true
else delegate l .test(x )
fi

Fig. 7. The concurrent implementation of Sort

however, possible to avoid the entire list being ‘locked’ throughout the dura-
tion of a test method. In the sequential implementation, invocations of the test
method in successive instances of Sort run down the list structure until either
the value being sought is found or the end of the list is reached; at this point
the Boolean result is passed back up the list; when the result reaches the object
at the head of the list it is passed to the client. If instead each object has the
option to delegate the responsibility of answering the client, it is possible for the
first object in the list to accept further method calls. Again one can imagine
a sequence of test method calls progressing down the list concurrently.25 The
transformed implementation of test is given in Figure 7. A more telling example
with trees is given in [Jon96].

Because release statements do not have to come at the end of methods and
the use of delegate statements, COOL is already an object-based language which
permits concurrency. Other ways in which concurrency can be added are men-
tioned in Section 6.6.

Sections 6.3–6.5 outline the parts of a formal description. Appendix C fills in
the details and collects the description in the same order as Appendix B. But
first the overall modelling strategy is discussed.

6.2 Modelling Strategy

At one level, objects are just pieces of storage (not unlike records) that can be
dynamically created by executing a new statement. One can thus anticipate that
25 Notice however that although the linear structure of the list prevents overtaking, it

is possible for invocations to be answered in a different order from that in which they
were accepted. For example –in the situation – if two invocations are accepted in the
order test(4) followed by test(1), it is possible for the result of the second call to be
returned before the first has completed. Although this would constitute a modified
behaviour when viewed from an all-seeing spectator, no COOL program can detect
the difference.
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there will have to be –in our semantic model– a mapping from some Reference to
the local values. But this does not completely bring out the nature of objects. I
owe to the late Ole-Johan Dahl the observation that objects are best understood
as “blocks” that can be instantiated multiple times (in contrast to the Algol
model where their existence is governed by when control flows through their
text). A class defines instance variables and methods just like the local variables
and functions/procedures of a block. The instance variables are known only to
those methods. One oddity is that the scope of the method names is external to
the class (but this is precisely so that they become the access points to actions
on the instances (objects) of the class). As mentioned already, the real difference
from an Algol block is that instances of classes can be created at will.26

This understanding gives us our basic modelling strategy: the run-time infor-
mation about objects will be stored in a mapping (ObjMap in Section 6.5). The
ObjInfos stored in this mapping have –as might be expected– a field (state) in
which the values of the instance variables for the object in question are stored.
Because the threads are running interleaved, ObjInfo is also keeping track of
what text remains to be executed in each active thread. In essence, ObjInfo
replaces the notion of a “configuration” discussed in Section 3.1. (Section 6.5
discusses the other fields in ObjInfo.) Notice that there is no notion of global
state here although one might need one if input/output to files were considered.

Section 4.2 points out the need to have access to the text of any program
unit which can be used from many places. In COOL, this applies both to the
shape (in terms of its instance variables) of a class and the text of the methods
of a class for when they are invoked. In Section 6.5 the program text is always
available in Classes . This leads us to an overall semantic relation:

s−→:P((Classes ×ObjMap) ×ObjMap)

Returning to the question of relating the parameter passing in COOL to what
has gone before, it is clear that object references are passed by-reference. This
is precisely what lets a programmer set up sharing patterns (which can in turn
introduce race conditions).

6.3 Abstract Syntax

The aim here is to build up the definition of “COOL” in Appendix C where the
description is organized by language construct. Here, the whole abstract syntax
is presented at once.

A Program contains a collection of named ClassBlocks; it is assumed that
execution begins with a single (parameterless) method call.

Program :: cm : Classes
start -class : Id
start -meth : Id

Classes = Id m−→ ClassBlock

26 Postponing a discussion of nesting until Section 6.6.
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Notice that there is (unlike in the Block language) no body in a ClassBlock ;
having one would provide another natural concurrency extension – see Section 6.6.

ClassBlock :: vars : Id m−→ Type
meths : Id m−→ Meth

Type = Id | ScalarType

ScalarType = IntTp | BoolTp

Methods are very like function definitions.

Meth :: returns : Type
params : Id∗

paramtps : Id m−→ Type
body : Stmt∗

All of the points to be illustrated can be made with the following list of
statements.

Stmt = Assign | If | New | MethCall | Return | Release | Delegate

Assign :: lhs : Id
rhs : Expr

If :: test : Expr
th : Stmt∗

el : Stmt∗

New :: targ : Id
class : Id

MethCall :: lhs : Id
obj : Id
meth : Id
args : Id∗

Return :: val : (Expr | self)

Release :: val : (Expr | self)

Delegate :: obj : Id
meth : Id
args : Id∗

The syntax of expression is presented only in the appendix.

6.4 Context Conditions

The context conditions are straightforward (and are given in the appendix).
Well-formed COOL programs are statically checked to have only syntactically
correct method calls.
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6.5 Semantics

Dynamic information about Objects is stored in:

ObjMap = Reference m−→ ObjInfo

ObjInfo :: class : Id
state : VarState
status : Status
remaining : Stmt∗

client : [Reference]

For any object, the class field is the name of the class to which it belongs. This
can be used on invocation of a method to locate its body.

The state field for an object contains the values of its instance variables.

VarState = Id m−→ Val

Val = Reference | Z | B

There is some redundancy in the way the status of an object is recorded but it
is in all cases essential to be able to distinguish between an object which presents
an active thread from one which is idle (methods can only be invoked in idle
threads). Furthermore, when an object is waiting for a value to returned, the
Wait field records where that value will be stored.

Status = Active | Idle |Wait

Wait :: lhs : Id

For an Active thread (object), the text remaining to be executed in its
method is recorded in the remaining field and the identity of the client who
is awaiting a returned value from any object is recorded in that object’s client
field.

The types of the required relations are

s−→:P((Classes ×ObjMap) ×ObjMap)

and

e−→:P((Expr ×VarState)×Val)

Each rule in the semantics for a statement needs to locate an active thread
awaiting execution of a statement of that type: thus the general shape of all of
the s−→ rules is:

O(a) = mk -ObjInfo(c, σ,Active, [mk -Stmt -Type(. . .)] � rl , co)
...
(C ,O) s−→ O † · · ·
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For new, all that is needed is a thread ready to execute mk -New(targ, c′).
The execution of that statement is reflected by its removal and a new object
(with a brand new Reference — and in Idle status) is created with appropriate
initial values for the instance variables:

O(a) = mk -ObjInfo(c, σ,Active, [mk -New(targ, c′)] � rl , co)
b ∈ (Reference − dom O)
aobj ′ = mk -ObjInfo(c, σ † {targ �→ b},Active, rl , co)
σb = initial values
nobj = mk -ObjInfo(c′, σb , Idle, [ ],nil)
(C ,O) s−→ O † {a �→ aobj ′, b �→ nobj}

In order for thread a to invoke a method in another thread, the latter must
be quiescent (its status field must be Idle). The statements to be executed for
the called method are found in C and parameters are passed in an obvious way.

O(a) =
mk -ObjInfo(c, σ,Active, [mk -MethCall(lhs , obj ,meth, args)] � rl , co)

O(σ(obj )) = mk -ObjInfo(c′, σ′, Idle, [ ],nil)
C (c′) = mk -ClassBlock(vars,meths)
aobj ′ = mk -ObjInfo(c, σ,mk -Wait(lhs), rl , co)
σ′′ = σ′ † {(meths(meth).params)(i) �→ σ(args(i)) | i ∈ inds args}
sobj = mk -ObjInfo(c′, σ′′,Active,meths(meth).body, a)
(C ,O) s−→ O † {a �→ aobj ′, σ(obj ) �→ sobj}

When a method finishes (remember the Release can have occured earlier) it
reverts to the quiescent status.

O(a) = mk -ObjInfo(c, σ,Active, [ ], co)
aobj ′ = mk -ObjInfo(c, σ, Idle, [ ],nil)
(C ,O) s−→ O † {a �→ aobj ′}

Returning values makes the server object Idle. The thread to which the value
is to be returned is found from the client field of the completing method. The
place to which the returned value should be assigned is found in mk -Wait(lhs)
which was placed there at the time of the method invocation. The server object
a becomes idle.

O(a) = mk -ObjInfo(c, σ,Active, [mk -Return(e)] � rl , co)
e ∈ Expr
(e, σ) e−→ v
O(co) = mk -ObjInfo(c′, σ′,mk -Wait(lhs), sl , co′)
aobj ′ = mk -ObjInfo(c, σ, Idle, [ ],nil)
cobj ′ = mk -ObjInfo(c′, σ′ † {lhs �→ v},Active, sl , co′)
(C ,O) s−→ O † {a �→ aobj ′, co �→ cobj ′}

If self is being returned, replace the second line with v = a.
Releasing a rendez vous is similar except that the a thread remains active:
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O(a) = mk -ObjInfo(c, σ,Active, [mk -Release(e)] � rl , co)
(e, σ) e−→ v
O(co) = mk -ObjInfo(c′, σ′,mk -Wait(lhs), sl , co′)
aobj ′ = mk -ObjInfo(c, σ,Active, rl ,nil)
cobj ′ = mk -ObjInfo(c′, σ′ † {lhs �→ v},Active, sl , co′)
(C ,O) s−→ O † {a �→ aobj ′, co �→ cobj ′}

If self is being returned, one again replaces the second line with v = a.
The delegate statement is interesting because it works like a combination of

method invocation and a release statement:
O(a) =

mk -ObjInfo(c, σ,Active, [mk -Delegate(obj ,meth, args)] � rl , co)
O(σ(obj )) = mk -ObjInfo(c′, σ′, Idle, [ ],nil)
C (c′) = mk -ClassBlock(vars,meths)
aobj ′ = mk -ObjInfo(c, σ,Active, rl ,nil)
σ′′ = σ′ † {(meths(meth).params)(i) �→ σ(args(i)) | i ∈ inds args}
sobj = mk -ObjInfo(c′, σ′′,Active,meths(meth).body, co)
(C ,O) s−→ O † {a �→ aobj ′, σ(obj ) �→ sobj}
Rules For Assign etc. should be obvious (and are in the appendix).

6.6 Developments from Here

There are an enormous number of developments that one can make from the
definition in Appendix C. It is straightforward to add new data types (such as
strings) or new statement types. A(n OO) purist would point out that COOL is
not fully OO (in the sense of Smalltalk) since it uses integer and Boolean values.
(There is a subtlety in removing Booleans from the language itself: in order to
give a semantics to any statement requiring a truth-valued result, one ends up
needing some form of “closure”.) Adding arrays is also interesting in as much
as it highlights the lack of a location concept for the instance variables (see also
below).

More subtly, it is not difficult to partially lift the restriction on “one method
active per object” and provide some form of “call back” without introducing
race conditions.

Much more interesting is to add to COOL new ways of creating concurrency.
In Appendix C, concurrency is achieved by use of release (and delegate); as an
alternative (or addition), a parallel For statement could be added and one could,
for example, program a parallel version of the “Sieve of Eratosthenes” [Jon96].

A useful extension would be to add “creation code” to each class by including
code in the body of the class.

ClassBlock :: vars : Id m−→ Type
meths : Id m−→ Meth
constructor : [CMeth]

CMeth :: params : Id∗

paramtps : Id m−→ Type
body : Stmt∗
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One could then have the new statement pass arguments to the creation code

New :: targ : Id
class : Id
args : Id∗

Having a creation body in a Class makes it an autonomous locus of control; one
could then fire off many processes at once (cf. [Ame89]). Thus the semantic rule
for the new statement might become:

O(a) = mk -ObjInfo(c, σ,Active, [mk -New(targ, c′, args)] � rl , co)
b ∈ (Reference − dom O)
aobj ′ = mk -ObjInfo(c, σ † {targ �→ b},Active, rl , co)
mk -ClassBlock(vars,meths, cons) = C (c′)
mk -CMeth(parms , parmts , cbody) = cons
σb = {parms(i) �→ σ(args(i)) | i ∈ inds parms}
nobj = mk -ObjInfo(c′, σb ,Active, cbody,nil)
(C ,O) s−→ O † {a �→ aobj ′, b �→ nobj}

COOL’s “one method per object” rule means that the constructor will block
other method calls until construction is finished.

Another interesting extension would be to allow some access to the instance
variables of an object (as in Java’s public). It would be safe to do this for Idle

objects; permitting such access within an Active object would introduce the
danger of race conditions.

One could go further and add some form of process algebraic notation for
controlling permissible orders of method activation.27

Object-oriented purists would also object that COOL offers no form of inheri-
tance. This is –at least in part– intentional because of the confusions surrounding
the idea. One useful handle on the semantics of inheritance is to go back to the
observation that classes are like blocks that can be instantiated at will. A nested
block offers all of the facilities (variables and functions) of its surrounding block
except where overridden. If one thinks of inheritance as creating instances of an
inner block, one begins to see what the semantic implications might be (including
some doubt about “multiple inheritance”).

7 Conclusions

It is hoped that the reader now sees the extent to which semantic models can elu-
cidate and record the understanding of the features of programming languages.
There are descriptions of many real languages (full citations are omitted here
for space reasons)

27 One could derive intuition from similar ideas in the meta-language as in [FL98],
[But00] or [WC02]. My own preference would be to use pi-calculus and have the ν
operator create objects (I have given talks on this but not yet written anything).
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– (operational and denotational) of ALGOL 60
– (denotational) of Pascal
– SOS for ML
– (denotational) of PL/I ECMA/ANSI standard
– (denotational) of Ada
– Modula-2 standard
– Java description [KNvO+02]

In fact, the obvious duplication involved in writing descriptions where there
is a considerable amount of overlap in the features of the languages has led to
attempts to look for ideas that make it possible to document language concepts
in a way which facilitates their combination. Early steps towards this are visible
in the “combinators” of the Vienna PL/I description [BBH+74]; Mosses’ “ac-
tion semantics” [Mos92] took this much further and he has more recently been
studying “Modular SOS” [Mos06].

There is no doubt that reasoning about language descriptions is extremely
important. This goes beyond using a semantics to establish facts about particular
programs as discussed in Section 3.2. A simple example of a general result is that
a well-formed program cannot give rise to run-time type errors. An important
class of proofs is the consistency of Floyd-Hoare-like proof rules with respect to a
model-oriented semantics. The paper [CJ07] is an example of this (and it contains
references to earlier material in this vein) which establishes the soundness of
rely/guarantee rules.

The potential that originally took this author to the IBM Vienna Labora-
tory in 1968 was the use of formal language descriptions as a base for compiler
design.28 A description from the research at that time is [JL71] (but much of
the material is only available as Technical Reports). An important historical
reference is [MP66].

A knowledgeable reader might question why this text has been based on oper-
ational –rather than denotational [Sto77]– semantics. It is claimed in Section 1.3
that the message is “abstraction, abstraction, abstraction” and there is a clear
technical sense in which denotational semantics are more abstract than oper-
ational. The reasons are largely pedagogic (cf. [CJJ06]) but it is this author’s
conviction that once concurrency has to be tackled, the cost of extra mathemat-
ical apparatus does not present an adequate return.

The other omitted topic that might give rise to comment is that of process
algebras such as CSP [Hoa78], CCS [Mil89] or the pi-calculus [MPW92, SW01].
The topic of their semantics and proof methods is itself fascinating.

One topic that links closely with the material above is the mapping of object-
oriented languages to process algebras (cf. [Wal91, Jon93]). These semantics
have been used to justify the equivalences used in transforming OO programs in
Section 6 — see [Wal93, Jon94, San99] and references therein.

28 Notice that post-facto proofs were seen even then as pointless: the pay off of formal-
ism is in the design process.
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A Base Language

Notice that the formulae in this appendix separate abstract syntax, context
conditions and semantics. This is not the order used in other appendices29 but
it serves at this stage to emphasize the distinctions.

A.1 Abstract Syntax

Program :: vars : Id m−→ ScalarType
body : Stmt∗

ScalarType = IntTp | BoolTp

Stmt = Assign | If |While

Assign :: lhs : Id
rhs : Expr

If :: test : Expr
th : Stmt∗

el : Stmt∗

While :: test : Expr
body : Stmt∗

Expr = ArithExpr | RelExpr | Id | ScalarValue

ArithExpr :: opd1 : Expr
operator : Plus |Minus

opd2 : Expr

RelExpr :: opd1 : Expr
operator : Equals | NotEquals

opd2 : Expr

ScalarValue = Z | B

A.2 Context Conditions

In order to define the Context Conditions below, an auxiliary object is required
in which the types of declared identifiers can be stored.

TypeMap = Id m−→ ScalarType

wf -Program :Program → B

wf -Program(mk -Program(vars, body)) ! wf -StmtList(body, vars)

29 For reference purposes, this is normally most convenient. There remains the decision
whether to present the parts of a language in a top-down (from Program to Expr)
order or bottom-up: this decision is fairly arbitrary. What is really needed is an
interactive support system!
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wf -StmtList : (Stmt∗)× TypeMap → B

wf -StmtList(sl , tpm) ! ∀i ∈ inds sl · wf -Stmt(sl(i), tpm)

wf -Stmt :Stmt × TypeMap → B

wf -Stmt(s , tpm) ! given by cases below

wf -Stmt(mk -Assign(lhs , rhs), tpm) !
lhs ∈ dom tpm ∧
c-tp(rhs , tpm) = tpm(lhs)

wf -Stmt(mk -If (test , th, el), tpm) !
c-tp(test , tpm) = BoolTp ∧
wf -StmtList(th, tpm) ∧ wf -StmtList(el , tpm)

wf -Stmt(mk -While(test , body), tpm) !
c-tp(test , tpm) = BoolTp ∧
wf -StmtList(body, tpm)

An auxiliary function c-tp is defined

c-tp :Expr × TypeMap → (IntTp | BoolTp | Error)

c-tp(e, tpm) ! given by cases below

c-tp(mk -ArithExpr(e1, opt , e2), tpm) !
if c-tp(e1, tpm) = IntTp ∧ c-tp(e2, tpm) = IntTp

then IntTp

else Error

c-tp(mk -RelExpr(e1, opt , e2), tpm) !
if c-tp(e1, tpm) = IntTp ∧ c-tp(e2, tpm) = IntTp

then BoolTp

else Error

For the base cases:

e ∈ Id ⇒ c-tp(e, tpm) = tpm(e)

e ∈ Z ⇒ c-tp(e, tpm) = IntTp

e ∈ B ⇒ c-tp(e, tpm) = BoolTp

A.3 Semantics

An auxiliary object is needed to describe the Semantics — this “Semantic Ob-
ject” (Σ) stores the association of identifiers and their values.

Σ = Id m−→ ScalarValue
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σ0 = {id �→ 0 | id ∈ dom vars ∧ vars(id) = IntTp}∪
{id �→ true | id ∈ dom vars ∧ vars(id) = BoolTp}

(body, σ0)
sl−→ σ′

(mk -Program(vars, body))
p−→ Done

The semantic transition relation for statement lists is

sl−→:P((Stmt∗ × Σ)× Σ)

([ ], σ) sl−→ σ

(s , σ) s−→ σ′

(rest , σ′) sl−→ σ′′

([s ] � rest , σ) sl−→ σ′′

The semantic transition relation for single statements is

s−→:P((Stmt × Σ)× Σ)

(rhs , σ) e−→ v
(mk -Assign(lhs , rhs), σ) s−→ σ † {lhs �→ v}

(test , σ) e−→ true

(th, σ) sl−→ σ′

(mk -If (test , th, el), σ) s−→ σ′

(test , σ) e−→ false

(el , σ) sl−→ σ′

(mk -If (test , th, el), σ) s−→ σ′

(test , σ) e−→ true

(body, σ) sl−→ σ′

(mk -While(test , body), σ′) s−→ σ′′

(mk -While(test , body), σ) s−→ σ′′

(test , σ) e−→ false
(mk -While(test , body), σ) s−→ σ

The semantic transition relation for expressions is

e−→:P((Expr × Σ)× ScalarValue)

(e1, σ) e−→ v1
(e2, σ) e−→ v2
(mk -ArithExpr(e1,Plus, e2), σ) e−→ v1 + v2
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(e1, σ) e−→ v1
(e2, σ) e−→ v2
(mk -ArithExpr(e1,Minus, e2), σ) e−→ v1− v2

(e1, σ) e−→ v1
(e2, σ) e−→ v2
v1 = v2
(mk -RelExpr(e1,Equals, e2), σ) e−→ true

(e1, σ) e−→ v1
(e2, σ) e−→ v2
v1 = v2
(mk -RelExpr(e1,NotEquals, e2), σ) e−→ false

e ∈ Id
(e, σ) e−→ σ(e)

e ∈ ScalarValue
(e, σ) e−→ e

B The Language “Blocks”

This appendix summarizes one of the definitions discussed in Section 4 and
shows a useful way in which a complete definition can be ordered. The “Blocks”
language is described here with parameter passing by-location.

B.1 Auxiliary Objects

The context conditions use:

Types = Id m−→ Type

Type = ScalarType | FunType

FunType :: returns : ScalarType
paramtpl : ScalarType∗

The semantic rules use:

Env = Id m−→ Den

Den = ScalarLoc | FunDen

Where ScalarLoc is an infinite set chosen from Token.
The types of the semantic relations are
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p−→:P(Program × Σ

sl−→:P(((Stmt∗)× Env × Σ)× Σ)

s−→:P((Stmt × Env × Σ)× Σ)

e−→:P((Expr × Env × Σ)× ScalarValue)

Abbreviations

σ ∈ Σ a single “state”
Σ the set of all “States”
Arith Arithmetic
Def Definition
Den Denotation
env a single “environment”
Env the set of all “Environments”
Expr Expression
Proc Procedure
opd operand
Rel Relational
Sc Scalar
Seq Sequence
Stmt Statement
. . .

B.2 Programs

Abstract Syntax

Program :: Block

wf -Program :Program → B

Context conditions wf -Program(mk -Program(b)) ! wf -Block(b, { })

Semantics
(b, { }, { }) s−→ σ′

(mk -Program(b))
p−→ σ′

B.3 Blocks

Block :: vars : Id m−→ ScalarType
funs : Id m−→ Fun
body : Stmt∗

Abstract syntax ScalarType = IntTp | BoolTp



224 C.B. Jones

wf -Block :Block × Types → B

Context conditions wf -Block (mk -Block(vars, funs , body), tps) !
dom vars ∩ dom funs = { } ∧
let var -tps = tps † vars in
let fun-tps =
{f �→ mk -FunType(funs(f ).returns ,

apply(funs(f ).params , funs(f ).paramtps)) |
f ∈ dom funs} in

∀f ∈ dom funs · wf -Fun(funs(f ), var -tps)
wf -StmtList(body, var -tps † fun-tps)

Notice that this rules out recursion.

Semantics

(varenv , σ′) = newlocs(vars, σ)
funenv =
{f �→ b-FunDen(funs(f ), env † varenv) | f ∈ dom funs}

env ′ = env † varenv † funenv
(body, env ′, σ′) sl−→ σ′′

(mk -Block(vars, funs , body), env , σ) s−→ (dom σ) � σ′′

newlocs (vars: (Id m−→ ScalarType), σ: Σ) varenv :Env , σ′: Σ

post dom varenv = dom vars ∧
disj (rng varenv ,dom σ) ∧
one-one(varenv) ∧
σ′ = σ ∪ {varenv(id) �→ 0 | id ∈ dom vars ∧ vars(id) = IntTp} ∪

{varenv(id) �→ true | id ∈ dom vars∧vars(id) = BoolTp}

30

B.4 Function Definitions
Fun :: returns : ScalarType

params : Id∗

paramtps : Id m−→ ScalarType
body : Stmt∗

result : Expr

Abstract syntax

30 The auxiliary function one-one is defined:

one-one : (X m−→ Y ) → B

one-one(m) ! ∀a, b ∈ dom m · m(a) = m(b) ⇒ a = b
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wf -Fun :Fun × Types → B

Context conditions
wf -Fun(mk -Fun(returns , params , paramtps , body, result), tps) !
uniquel(params) ∧
elems params = dom paramtps ∧
tp(result) = returns ∧
wf -StmtList(body, tps † paramtps)

b-Fun-Den :Fun × Env → FunDen

b-Fun-Den(mk -Fun(returns , params , paramtps , body, result), env) !
mk -FunDen(params , body, result , env)

B.5 Statement Lists

wf -StmtList :Stmt∗ × Types → B

Context conditions wf -StmtList(sl , tps) !
∀i ∈ inds sl · wf -Stmt(sl(i), tps)

Semantics ([ ], env , σ) sl−→ σ

(s , env , σ) s−→ σ′

(rest , env , σ′) sl−→ σ′′

([s ] � rest , env , σ) sl−→ σ′′

B.6 Statements

Abstract syntax Stmt = Block | Assign | If | Call

B.7 Assignments

Assign :: lhs : Id
rhs : Expr

Abstract syntax

Context conditions wf -Stmt(mk -Assign(lhs , rhs), tps) !
tp(rhs , tps) = tp(lhs , tps)

Semantics

(lhs , env , σ) lhv−→ l
(rhs , env , σ) e−→ v
(mk -Assign(lhs , rhs), env , σ) s−→ σ † {l �→ v}



226 C.B. Jones

B.8 If Statements

If :: test : Expr
th : Stmt∗

el : Stmt∗

Abstract syntax

Context conditions wf -Stmt(mk -If (test , th, el), tps) !
tp(test , tps) = BoolTp ∧
wf -StmtList(th, tps) ∧ wf -StmtList(el , tps)

Semantics

(test , env , σ) e−→ true

(th, env , σ) sl−→ σ′

(mk -If (test , th, el), env , σ) s−→ σ′

(test , env , σ) e−→ false

(el , env , σ) sl−→ σ′

(mk -If (test , th, el), env , σ) s−→ σ′

B.9 Call Statements

Call :: lhs : VarRef
fun : Id
args : Id∗

Abstract syntax

Context conditions wf -Stmt(mk -Call(lhs , fun, args), tps) !
fun ∈ dom tps ∧
tps(fun) ∈ FunType ∧
tp(lhs , tps) = (tps(fun)).returns ∧
len args = len (tps(fun)).paramtpl ∧
∀i ∈ inds args · tp(args(i), tps) = ((tps(fun)).paramtpl)(i)

Semantics

(lhs , env , σ) lhv−→ l
mk -FunDen(parms , body, result , context) = env(f )
len arglocs = len args
∀i ∈ inds arglocs · (args(i), env , σ) lhv−→ arglocs(i)
parm-env = {parms(i) �→ arglocs(i) | i ∈ inds parms}
(body, (context † parm-env), σ) sl−→ σ′

(result , (context † parm-env), σ′) e−→ res
(mk -Call(lhs , f , args), env , σ) s−→ (σ′ † {l �→ res})
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B.10 Expressions

Abstract syntax Expr = ArithExpr | RelExpr | Id | ScalarValue

ArithExpr :: opd1 : Expr
operator : Plus

opd2 : Expr

RelExpr :: opd1 : Expr
operator : Equals

opd2 : Expr

ScalarValue = Z | B

Semantics

(e1, env , σ) e−→ v1
(e2, env , σ) e−→ v2
(mk -ArithExpr(e1,Plus, e2), env , σ) e−→ v1 + v2

(e1, env , σ) e−→ v1
(e2, env , σ) e−→ v2
v1 = v2
(mk -RelExpr(e1,Equals, e2), env , σ) e−→ true

e ∈ Id
(id , env , σ) lhv−→ l
(e, env , σ) e−→ σ(l)

e ∈ ScalarValue
(e, env , σ) e−→ e

C COOL

Reordered definition from Section 6.
C.1 Auxiliary Objects

The objects required for both Context Conditions and Semantic Rules are given
first.
Objects Needed for Context Conditions

The following objects are needed in the description of the Context Conditions.

ClassTypes = Id m−→ ClassInfo

ClassInfo = Id m−→ MethInfo

The only information required about methods is about their types (arguments
and results):

MethInfo :: return : Type
parms : Type∗
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Type = Id | ScalarType

ScalarType = IntTp | BoolTp

When checking for the well-formedness of the body of a Method , information
about its instance variables is also needed

VarEnv = Id m−→ Type

Semantic Objects

In addition to the abstract syntax of Classes (see below), the following objects
are needed in the description of the Semantics.

ObjMap = Reference m−→ ObjInfo

ObjInfo :: class : Id
state : VarState
status : Status
remaining : Stmt∗

client : [Reference]

VarState = Id m−→ Val

Val = [Reference] | Z | B
The set Reference is infinite and nil /∈ Reference.

Status = Active | Idle |Wait

Wait :: lhs : Id

The types of the semantic relations are

p−→:P(Program ×Done)

s−→:P((Classes ×ObjMap) ×ObjMap)

e−→:P((Expr ×VarState)×Val)

Abbreviations

Arith Arithmetic
Expr Expression
Obj Object
opd operand
Meth Method
Rel Relational
Stmt Statement
Var Variable
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C.2 Programs

Abstract Syntax

Program :: cm : Classes
start -class : Id
start -meth : Id

Classes = Id m−→ ClassBlock

Context Conditions

wf -Program :Program → B

wf -Program(mk -Program(cm, start -c, start -m)) !
start -c ∈ dom cm ∧
start -m ∈ dom (cm(start -c).meths) ∧
let ctps = {c �→ c-tp(cm(c)) | c ∈ dom cm}
in ∀c ∈ dom cm · wf -ClassBlock(cm(c), ctps)

The following two functions extract ClassInfo and MethInfo respectively.

c-tp :ClassBlock → ClassInfo

c-tp(mk -ClassBlock(tpm,mm)) !
{m �→ c-minfo(mm(m)) | m ∈ dom mm}

c-minfo :Meth → MethInfo

c-minfo(mk -Meth(ret , pnl , ptm, b)) !
mk -MethInfo(ret , apply(pnl , ptm))

Semantics

With no input/output statements, the execution of a Program actually leaves no
trace. One might say that, for mk -Program(cm, init -class , init -meth), the initial
O is such that

a ∈ Reference
mk -ClassBlock(vars0 ,meths0) = cm(init -class)
σ0 = {v �→ nil | v ∈ dom (vars0) ∧ vars0(v) /∈ ScalarType} ∪

{v �→ false | v ∈ dom (vars0) ∧ vars0(v) = BoolTp} ∪
{v �→ 0 | v ∈ dom (vars0) ∧ vars0(v) = IntTp}

sl0 = meths0(init -meth).body
O = {a �→ mk -ObjInfo(init -class , σ0,Active, sl0,nil)}

and that execution ceases when there are no more “threads” active. It would, of
course, be more useful to look at running a program against an “object store”
from the file system; such an extension is straightforward but somewhat outside
the realm of the language itself.
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C.3 Classes

Abstract Syntax
ClassBlock :: vars : Id m−→ Type

meths : Id m−→ Meth
Context Conditions

wf -ClassBlock :ClassBlock × ClassTypes → B

wf -ClassBlock(mk -ClassBlock(tpm,mm), ctps) !
∀id ∈ dom tpm · (tpm(id) ∈ ScalarType ∨ tpm(id) ∈ dom ctps) ∧
∀m ∈ dom mm · wf -Meth(mm(m), ctps , tpm)

Semantics

There are no semantics for classes as such — see the semantics of New in Sec-
tion C.8.

C.4 Methods

Abstract Syntax

Meth :: returns : Type
params : Id∗

paramtps : Id m−→ Type
body : Stmt∗

Context Conditions

wf -Meth :Meth × ClassTypes ×VarEnv → B

wf -Meth(mk -Meth(ret , pnl , ptm, b), ctps , v -env) !
(ret ∈ ScalarType ∨ ret ∈ dom ctps)) ∧
∀id ∈ dom ptm · (ptm(id) ∈ ScalarType ∨ ptm(id) ∈ dom ctps) ∧
elems pnl ⊆ dom ptm ∧
∀i ∈ inds b · wf -Stmt(b(i), ctps , v -env † ptm)

Semantics

There are no semantics for methods as such — see the semantics of method
invocation in Section C.9.

C.5 Statements

Stmt = Assign | If | New | MethCall | Return | Release | Delegate

Context Conditions

wf -Stmt :Stmt × ClassTypes ×VarEnv → B

wf -Stmt(s , ctps , v -env) ! by cases below
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C.6 Assignments

Remember that method calls cannot occur in an Assign – method invocation is
covered in Section C.9.

Abstract Syntax

Assign :: lhs : Id
rhs : Expr

Context Conditions

wf -Stmt(mk -Assign(lhs , rhs), ctps , v -env) !
lhs ∈ dom v -env ∧
tp(rhs , ctps , v -env) = v -env(lhs)

Semantics

O(a) = mk -ObjInfo(c, σ,Active, [mk -Assign(lhs , rhs)] � rl , co)
(rhs , σ) e−→ v
aobj ′ = mk -ObjInfo(c, σ † {lhs �→ v},Active, rl , co)
(C ,O) s−→ O † {a �→ aobj ′}

C.7 If Statements

Abstract Syntax

If :: test : Expr
th : Stmt∗

el : Stmt∗

Context Conditions

wf -Stmt(mk -If (test , th, el), ctps , v -env) !
tp(test , ctps , v -env) = BoolTp ∧
∀i ∈ inds th · wf -Stmt(th(i), ctps , v -env) ∧
∀i ∈ inds el · wf -Stmt(el(i), ctps , v -env)

Semantics

O(a) = mk -ObjInfo(c, σ,Active, [mk -If (test , th, el)] � rl , co)
(test , σ) e−→ true
aobj ′ = mk -ObjInfo(c, σ,Active, [th] � rl , co)
(C ,O) s−→ O † {a �→ aobj ′}

O(a) = mk -ObjInfo(c, σ,Active, [mk -If (test , th, el)] � rl , co)
(test , σ) e−→ false
aobj ′ = mk -ObjInfo(c, σ,Active, [el ] � rl , co)
(C ,O) s−→ O † {a �→ aobj ′}
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C.8 Creating Objects

Abstract Syntax

New :: targ : Id
class : Id

Context Conditions

wf -Stmt(mk -New(targ, class), ctps , v -env) !
class ∈ dom ctps ∧
class = v -env(targ)

Semantics

O(a) = mk -ObjInfo(c, σ,Active, [mk -New(targ, c′)] � rl , co)
b ∈ (Reference − dom O)
aobj ′ = mk -ObjInfo(c, σ † {targ �→ b},Active, rl , co)
σb =
{v �→ 0 | v ∈ dom (C (c′).vars) ∧ (C (c′).vars)(v) = IntTp}∪
{v �→ false | v ∈ dom (C (c′).vars) ∧ (C (c′).vars)(v) = BoolTp}∪
{v �→ nil | v ∈ dom (C (c′).vars) ∧ (C (c′).vars)(v) /∈ ScalarType}

nobj = mk -ObjInfo(c′, σb , Idle, [ ],nil)
(C ,O) s−→ O † {a �→ aobj ′, b �→ nobj}

C.9 Invoking and Completing Methods

Abstract Syntax

MethCall :: lhs : Id
obj : Id
meth : Id
args : Id∗

Context Conditions

wf -Stmt(mk -MethCall(lhs , obj ,meth, args), ctps , v -env) !
obj ∈ dom ctps ∧
meth ∈ dom (ctps(obj )) ∧
((ctps(obj ))(meth)).return = v -env(lhs) ∧
len args = len ((ctps(obj ))(meth)).parms ∧
∀i ∈ inds args ·

tp(args(i), ctps , v -env) = (((ctps(obj ))(meth)).parms)(i)
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Semantics

O(a) =
mk -ObjInfo(c, σ,Active, [mk -MethCall(lhs , obj ,meth, args)] � rl , co)

O(σ(obj )) = mk -ObjInfo(c′, σ′, Idle, [ ],nil)
C (c′) = mk -ClassBlock(vars,meths)
aobj ′ = mk -ObjInfo(c, σ,mk -Wait(lhs), rl , co)
σ′′ = σ′ † {(meths(meth).params)(i) �→ σ(args(i)) | i ∈ inds args}
sobj = mk -ObjInfo(c′, σ′′,Active,meths(meth).body, a)
(C ,O) s−→ O † {a �→ aobj ′, σ(obj ) �→ sobj}

When a method has no more statements to execute (remember the Release can
have occured earlier) it returns to the quiescent status.

O(a) = mk -ObjInfo(c, σ,Active, [ ], co)
aobj ′ = mk -ObjInfo(c, σ, Idle, [ ],nil)
(C ,O) s−→ O † {a �→ aobj ′}

C.10 Returning Values

Abstract Syntax

Return :: val : (Expr | Self)
Context Conditions

wf -Stmt(mk -Return(val), ctps , v -env) !
incomplete

Semantics

The cases of an Expr and Self separately.
O(a) = mk -ObjInfo(c, σ,Active, [mk -Return(e)] � rl , co)
e ∈ Expr
(e, σ) e−→ v
O(co) = mk -ObjInfo(c′, σ′,mk -Wait(lhs), sl , co′)
aobj ′ = mk -ObjInfo(c, σ, Idle, [ ],nil)
cobj ′ = mk -ObjInfo(c′, σ′ † {lhs �→ v},Active, sl , co′)
(C ,O) s−→ O † {a �→ aobj ′, co �→ cobj ′}

O(a) = mk -ObjInfo(c, σ,Active, [mk -Return(e)] � rl , co)
e = Self

O(co) = mk -ObjInfo(c′, σ′,mk -Wait(lhs), sl , co′)
aobj ′ = mk -ObjInfo(c, σ, Idle, [ ],nil)
cobj ′ = mk -ObjInfo(c′, σ′ † {lhs �→ a},Active, sl , co′)
(C ,O) s−→ O † {a �→ aobj ′, co �→ cobj ′}
Release is more general than a Return in the sense that the former does not

have to terminate a method.
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Abstract Syntax

Release :: val : (Expr | Self)

Context Conditions

wf -Stmt(mk -Release(val), ctps , v -env) !
incomplete

Semantics

The cases of an Expr and Self are considered separately.

O(a) = mk -ObjInfo(c, σ,Active, [mk -Release(e)] � rl , co)
e ∈ Expr
(e, σ) e−→ v
O(co) = mk -ObjInfo(c′, σ′,mk -Wait(lhs), sl , co′)
aobj ′ = mk -ObjInfo(c, σ,Active, rl ,nil)
cobj ′ = mk -ObjInfo(c′, σ′ † {lhs �→ v},Active, sl , co′)
(C ,O) s−→ O † {a �→ aobj ′, co �→ cobj ′}

O(a) = mk -ObjInfo(c, σ,Active, [mk -Release(e)] � rl , co)
e = Self

O(co) = mk -ObjInfo(c′, σ′,mk -Wait(lhs), sl , co′)
aobj ′ = mk -ObjInfo(c, σ,Active, rl ,nil)
cobj ′ = mk -ObjInfo(c′, σ′ † {lhs �→ a},Active, sl , co′)
(C ,O) s−→ O † {a �→ aobj ′, co �→ cobj ′}

C.11 Delegation

Abstract Syntax

Delegate :: obj : Id
meth : Id
args : Id∗

Context Conditions

wf -Stmt(mk -Delegate(obj ,meth, args), ctps , v -env) !
incomplete
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Semantics

O(a) =
mk -ObjInfo(c, σ,Active, [mk -Delegate(obj ,meth, args)] � rl , co)

O(σ(obj )) = mk -ObjInfo(c′, σ′, Idle, [ ],nil)
C (c′) = mk -ClassBlock(vars,meths)
aobj ′ = mk -ObjInfo(c, σ,Active, rl ,nil)
σ′′ = σ′ † {(meths(meth).params)(i) �→ σ(args(i)) | i ∈ inds args}
sobj = mk -ObjInfo(c′, σ′′,Active,meths(meth).body, co)
(C ,O) s−→ O † {a �→ aobj ′, σ(obj ) �→ sobj}

C.12 Expressions

Abstract Syntax

Expr = ArithExpr | RelExpr | TestNil | Id | ScalarValue | nil

ArithExpr :: opd1 : Expr
operator : Plus

opd2 : Expr

RelExpr :: opd1 : Expr
operator : Equals

opd2 : Expr

TestNil :: obj : Id

ScalarValue = Z | B
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